Поступило в редакцию: декабрь 2013

УДК 547.562.32

Получение пентафторфенола окислением триметил(пентафторфенил)силана

В.Э. Бойко a,b , А.А. Тютюнов a,b , В.Л. Дон a,b , С.М. Игумнов a,b1

^а Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук, 119991, ГСП-1, Москва, В-334, ул. Вавилова, д. 28

^b ЗАО НПО "ПиМ Инвест", 119334, Москва, Ленинский пр-т 47 e-mail: boykii@mail.ru

Аннотация. Разработан новый способ получения пентафторфенола, окислением триметил(пентафторфенил)силана.

Ключевые слова: пентафторфенол, гексафторбензол, триметил(пентафторфенил)силан.

Пентафторфенол и его производные находят широкое применение для создания полимеров, обладающих уникальными свойствами [1], синтеза аминокислот, пептидов и нуклеозидов, являющихся интермедиатами в синтезе противоопухолевых агентов, ингибиторов ВИЧ [2-4], в качестве компонентов металлоценовых каталитических систем для полимеризации олефинов [5].

Все известные до настоящего времени способы получения пентафторфенола основаны на реакции нуклеофильного замещения атома фтора в гексафторбензоле гидроокисью калия [6-9] или алкоголятами [10].

В настоящее время гексафторбензол не является промышленно доступным продуктом, в связи с тем, что гексахлорбензол, из которого его получали ранее, запрещен к производству, поэтому возникла необходимость в разработке принципиально нового подхода к синтезу пентафторфенола на основе доступной сырьевой базы.

В литературе описан метод получения пентафторфенола по реакции расщепления боратов перекисью водорода в щелочной среде. Основным недостатком этого метода является необходимость для получения (пентафторфенил)триметоксибората, использовать соответствующий реактив Гриньяра, что существенно усложняет масштабирование этого метода [11, 12].

Ранее нами был разработан простой и эффективный метод получения (пентафторфенил)триметилсилана из пентафторбензойной кислоты или пентафторбромбензола [13]. Поэтому нам представлялось весьма интересным изучить возможность окисления (пентафторфенил)триметилсилана в пентафторфенол.

Варьируя природу окислителя и условия проведения реакции было обнаружено, что пентафторфенол образуется с приемлемым выходом 65% только в случае использования в качестве окислителя *трет*-бутилпероксибензоата и проведения реакции в присутствии КF и СuCl в ДМФА. При использовании других окислителей наблюдалось образование пентафторбензола и декафторбифенила в разных соотношениях (Табл 1).

Табл 1. Влияние природы окислителя.

#	перекись	Выход %		
		Ph _f H	Ph _f OH	Ph _f Ph _f
1	PhC(O)OOtBu	22	65	13
2	tBuOOH	89	0	11
3	<i>t</i> BuOO <i>t</i> Bu	91	0	9
4	H ₂ O ₂	100	0	0
5	CO(NH ₂) ₂ H ₂ O ₂	84	0	16
6	BaO ₂	73	0	27
7	MnO ₂	49	3	48
8	CrO ₃	72	0	28
9	Na ₂ S ₂ O ₈	100	0	0

Необходимо отметить, что не наблюдается окисления (пентафторфенил)триметилсилана *трет*-бутилпероксибензоатом в отсутствие фтористого калия или CuCl. В последнем случае основным продуктом реакции является пентафторбензол.

Схема 1

Другие соли одновалентной меди в отличие от солей двухвалентной меди также катализируют реакцию окисления.

Табл 2. Влияние природы катализатора.

# опыта	Cat.	Выход %		
		Ph _f OH	Ph _f H	Ph _f Ph _f

1	-	0	100	0
2	CuCl	65	22	13
3	CuBr	52	30	18
4	Cul	55	27	18
5	CuSO ₄	0	100	0
6	CH ₃ O ₂ SOH	0	0	0
7	H ₂ SO ₄	0	0	0

При изучении влияния природы растворителя на протекание данной реакции установлено, что наилучшим растворителем для данной реакции является ДМФА.

Табл. 3. Влияние природы растворителя.

# опыта		Выход %			
	Solv.	Ph _f OH	Ph _f H	Ph _f Ph _f	
1	ДМФА	65	22	13	
2	N-метилпирролидон	58	22	20	
3	Тетраметилмочевина	0	100	0	
4	Сульфолан	31	35	34	
5	Ацетонитрил	30	51	19	
6	ДМАА	0	100	0	

Так же было исследовано влияние температуры проведения процесса, как оказалось, наилучший выход пентафторфенола получен при проведении процесса при 20 °C и составляет 65%, при 0°C *температуры* приводит в реакцию, а последующее отогревание реакционной смеси до комнатной температуры приводит к неконтролируемой экзотермии до 110 °C. Если же реакцию проводить при 50-80 °C выход целевого продукта снижается до 20%.

В итоге нами был разработан новый способ получения пентафторфенола из легкодоступного триметил(пентафторфенил)силана. А так же были оптимизированы условия для проведения процесса в промышленных масштабах.

ЯМР 1 Н, 19 F спектры записаны на спектрометре "Bruker AVANCE-300" при 300 и 282 МНz, соответственно, внешний стандарт CDCl₃. Химические сдвиги для 1 Н спектров приведены относительно остаточного сигнала растворителя (δ 7.25, 4.79) и даются в м.д. относительно TMC. Химические сдвиги спектров 19 F приведены в м.д. относительно CFCl₃.

В двухлитровую колбу помещают 500 мл абс. ДМФА и при интенсивном перемешивании добавляют 58г (1 моль) фтористого калия и 9.9г (0.1 моль) хлористой меди. Далее из капельной до реакционной смеси охлажденной 10°C добавляют триметил(пентафторфенил)силана, реакционную смесь перемешивают 15-20минут отогревают до 20°C и затем из капельной воронки дозируют 194г третбутилпероксибензоата с такой скоростью, чтоб температура реакционной смеси не превышала 20 °C. Затем реакционную смесь разлагают равным объемом 1N HCl, отделяют органический слой, к нему добавляют ½ объема конц. НСІ и кипятят до прекращения газовыделения. Затем отделяют нижний слой и перегоняют. Получают 119г пентафторфенола. Т.кип. 143 $^{\circ}$ C, Т.пл. 34-36 $^{\circ}$ C, ЯМР 1 H δ : 10.5 (c, 1H,); ЯМР ¹⁹F δ: -165,1 (c, 2F 2,6), -168,3 (c, 2F 3,5), -174,7(c, 1F 4). Найдено (%): C, 39,07; H, 0,61; F, 51,69. C₆HF₅O. Вычислено (%): C, 39,15; H, 0,55; F, 51,61.

Список литературы

- 1. B. Boutevin, A. Rousseau, D. Bosc; J. Polym. Sci. A, Polym. Chem., 1992, 30(7), 1279-1286;
- 2. M. S. Ashwood, B. C. Bishop, I. F. Cottrell, K. M. Emerson, D. Hands, J. G. Ho, J. E. Lynch, Y. J. Shi, R. D. Wilson; *Патент США #* 7262169, **2007**;
- 3. R. P. Beckett, M. Whittaker, A. Miller, F. M. Martin; WO 9616931 1996;
- 4. T. Sammakia, T. B. Hurley; J. Org. Chem., 2000, 65(4), 979;
- 5. F. A.R Kaul, G. T Puchta, H. Schneider, M. Grosche, D. M. W. A Herrmann; *J. Organomet. Chem.*, **2001**, 621, 184;
- 6. L. A.Wall, W. J.Pummer, J. E.Fearn, J. M.Antonucci; J. Res. NBS, 1963, 67A, 481-497;
- 7. И. К. Бильдинов, Д. Ф. Мухаметшин, С. И. Коновалов, А. А. Захаров, М. М. Зиннуров; *Патент РФ #* 2343142 C2, **2009**;
- 8. J. M. Birchall, R. N. Haszeldine; *J. Chem. Soc.*, **1959**, 13-17;
- 9. W. J. Pummer, L. A. Wall; Science, 1958, 127, 643;
- 10. E.J. Forbes, R.D. Richardson, M. Stacey, J.C. Tatlow; J. Chem. Soc., 1959, 2019–2021;
- 11. T.Korenaga, F.Kobayashi, K.Nomura, S.Nagao, T.Sakai; *J. Fluorine Chem.*, **2007**, 128, 1153–1157;
- 12. I.Ikuyo, M.Hitoshi; Заявка на патент Японии JP 82548(A), **2005**;
- 13. V. E. Boyko, A. A. Tyutyunov, V. L. Don, S. M. Igumnov; Preparative method for obtaining of (polyfluoroaril)trimethylsilanes *I/Fluorine notes*, **2013**, 6 (91).

Статья представлена членом редколлегии С.М. Игумновым