Поступило в редакцию: ноябрь 2013

УДК 547.539.151

Препаративный метод получения полифторарилтриметилсиланов

В.Э. Бойко a,b , А.А. Тютюнов a,b , В.Л. Дон a,b , С.М. Игумнов a,b

^а Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук, 119991, ГСП-1, Москва, В-334, ул. Вавилова, д. 28

^b ЗАО НПО "ПиМ Инвест", 119334, Москва, Ленинский пр-т 47 e-mail: boykii@mail.ru

Аннотация. Разработаны два препаративных метода получения полифторарилтриметилсиланов из промышленно легкодоступных фторсодержащих ароматических кислот.

Ключевые слова: полифторарил(триметил)силаны, пентафторфенилтриметилсилан, тетрафторфенилдисиланы, тетрафторфенилсиланы.

Полифторарил(триметил)силаны являются универсальными реагентами для введения в органические молекулы фторароматических фрагментов. Соединения, содержащие данные фрагменты находят применение в электронике при создании диодов [1], жидкокристаллических дисплеев [2], в полиграфии [3] и т.д. Несмотря на широкую область применения данных соединений, способы получения таких промышленно востребованных соединений являются малопригодными для крупнотоннажного производства. В связи с этим целью нашего исследования стало разработать новый простой в технологическом отношении способ получения полифторарил(триметил)силанов, из доступных исходных веществ, выпускаемых промышленностью.

Синтетическая значимость фторорганосиланов привела к появлению целого ряда работ, посвященных разработке методов их получения. Так, синтез силана **3a** был успешно осуществлен путем электрохимического силилирования пентафторбензола с использованием растворимых цинковых или алюминиевых анодов [10]. Фторарилсиланы образуются с хорошим выходом взаимодействием реактивов Гриньяра [4, 5] или их литиевых аналогов [6, 7] с триметилхлорсиланом ,альтернативой является реакция полифторарилгалогенидов с триметилхлорсиланом в присутствии трисдиалкиламидафосфинов [8]. Так же пентафторфенил(триметил)силан может быть получен реакцией пентафторбензоилхлорида с гексаметилдисиланом при катализе комплексом палладия PdCl₂(PhCN)₂ в присутствии триэтилфосфита [9].

Все вышеперечисленные способы получения силана **За** обладают существенными недостатками и не могут быть интерпретированы в производстве т.к. требуют использования легко воспламеняющихся растворителей, металлорганических соединений устойчивых только в инертной атмосфере [4-7], использования чрезвычайно токсичных, канцерогенных веществ [8], использования в значительных количествах дорогостоящих катализаторов [9], а так же сложного специального оборудования [10].

Нами предлагается использовать в качестве исходных синтонов промышленно легкодоступные фторсодержащие ароматические кислоты. Калиевые соли, которых взаимодействуя с триметилхлорсиланом в полярном апротонном растворителе, таком, как

диметилформамид, диметилацетамид, N-метилпирролидон или сульфолан, при температуре 95–130°C с хорошим выходом образуют соответствующие полифторарил(триметил)силаны **За-h**.

В качестве типовой была выбрана реакция получения пентафторфенилтриметил силана **За**, в которой было изучено влияние растворителя и температуры.

$$C_6F_5COOH$$
 + KOH $\xrightarrow{CH_3OH}$ C_6F_5COOK
 $2a$
 C_6F_5COOK + (CH₃)₃SiCl $\xrightarrow{solv.}$ $C_6F_5Si(CH_3)_3$
 $2a$
 $3a$

Полученные данные представлены в таблице № 1 исходя из которой видно что наилучшие результаты были получены при проведении процесса в ДМФА.

Таблица 1. Влияние природы растворителя.

#	растворитель	T°C	Выход %
1	ДМФА	95	86
2	ДМАА	110	79
3	N-метилпирролидон	105	81
4	сульфолан	130	81
5	ацетонитрил	80	0

Модельная реакция была распространена на другие фторсодержащие моно и дикарбоновые кислоты.

При этом из солей фторированных ароматических дикислот могут быть получены целевые продукты, содержащие как одну, так и две триметилсилильные группы в зависимости от количества взятого для реакции триметилхлорсилана. При использовании двукратного мольного избытка триметилхлорсилана по отношению к дикалиевой соле фторароматической дикислоты, получают тетрафторфенилдисиланы с выходом 73-80%.

$$C_6F_4(COOK)_2 + 2(CH_3)_3SiCl \xrightarrow{solv.} C_6F_4(Si(CH_3)_3)_2$$

2b, 2f,2h $C_6F_4(Si(CH_3)_3)_2$

При эквимольном соотношении получают соответствующие тетрафторфенилсиланы полифторфенил(триметил)силаны идентичные полученным из соответствующих тетрафторфенилмонокарбоновых кислот с выходом 81-83%.

Полученные результаты представлены в таблице 2.

Таблица2. Получение фторарил(триметил)силанов из калиевых солей фторароматических кислот.

#	R _f COOH (1a-h)	R _f COOK (2a-h)	R _f COOK / CISi(CH ₃) ₃ (мольн.)	Solv.	Выход (3a-h)	R _f Si(CH ₃) ₃
1	1a	2a	1/1	ДМФА	(3a) 86	
2	1b	2b	1/2	ДМФА	(3b) 80	
3	1c	2c	1/1	ДМФА	(3c) 55	
4	1b	2b	1/1	ДМФА	(3d) 83	
5	1d	2d	1/1	ДМФА	(3d) 82	
6	1e	2e	1/1	ДМФА	(3e) 73	
7	1f	2f	1/1	ДМФА	(3c) 38	
8	1g	2g	1/1	ДМФА	(3g) 81	
9	1h	2h	1/1	ДМФА	(3g) 81	
10	1h	2h	1/2	ДМФА	(3h) 76	
11	1f	2f	1/2	ДМФА	(3f) 32	

Возможны два механизма протекания данного процесса.

Для выяснения нами был разработан альтернативный способ получения фторсодержащих фенилтриметилсиланов из соответствующих триметилсилиловых эфиров фторсодержащих ароматических кислот в присутствии нуклеофила.

$$C_6F_5COOH + (CH_3)_3SiCl \longrightarrow C_6F_5COOSi(CH_3)_3$$
 $C_6F_5COOSi(CH_3)_3 + Nu^- \xrightarrow{solv.} C_6F_5Si(CH_3)_3$
 $C_6F_5COOSi(CH_3)_3 + Nu^- \xrightarrow{solv.} C_6F_5Si(CH_3)_3$
 $C_6F_5COOSi(CH_3)_3 + Nu^- \xrightarrow{solv.} C_6F_5Si(CH_3)_3$

В случае же если проводить реакцию без катализатора (в отсутствии нуклеофила) то декарбоксилирования не происходит даже при более высоких температурах.

$$C_6F_5COOSi(CH_3)_3$$
 $\xrightarrow{solv.}$ $C_6F_5Si(CH_3)_3$ \xrightarrow{a} $C_6F_5Si(CH_3)_3$

Для определения оптимальных условий проведения процесса, нами, на модельном примере получения пентафторфенилтриметилсилана, были протестированы различные растворители. Результаты приведены в таблице 3.

Таблица 3. Влияние природы растворителя.

# опыта	Растворитель	Выход R _f Si(CH ₃) ₃ , %
1	ДМФА	(3a) 89
2	ДМАА	(3a) 80
3	сульфолан	(3a) 95
4	N-метилпирролидон	(3a) 88

Были получены хорошие результаты во всех тестируемых растворителях, но наилучшие показатели достигнуты в сульфолане в котором изучены влияние природы нуклеофила, а так же необходимого его количество для осуществления процесса.

Таблица 4. Влияние природы нуклеофила и его количества.

# опыта	Nu⁻	R _f COOSi(CH ₃) ₃ / Nu ⁻	Выход R _f Si(CH ₃) ₃ , %	
------------	-----	---	---	--

1	NaF	1/1	(3a) 20%
2	KF	1/1	(3a) 95%
3	KF	1/0.1	(3a) 92%
4	KF	1/0.01	(3a) 89%
5	CsF	1/0.1	(3a) 93%
6	KCI	1/0.01	(3a) 91%

Все нуклеофилы кроме фтористого натрия показали отличные результаты. Так же из полученных данных можно сделать вывод, что для полного прохождения реакции достаточно 1% нуклеофила. Таким образом было выяснено, что образование силана **3a** происходит по механизму **II** через декарбоксилирование силилового эфира **4a**. Попытка масштабирования в присутствии в качестве нуклеофила фтор-иона по завершении декарбоксилирования триметилсилилпентафторбензоата происходит дефтортриметилсилилирование с образованием пентафторфенильного полимера, что не наблюдается в случае использования хлор-иона в качестве нуклеофила.

Результаты, полученные при исследовании модельной реакции, были распространены на другие фторсодержащие моно и дикарбоновые кислоты. Расчеты проводились с использованием ДМФА в качестве растворителя и хлористого калия в качестве нуклеофила. Полученные результаты представленны в таблице 5.

Таблица 5. Получение фторарил(триметил)силанов из фторсодержащих ароматических кислот, через образование соответствующих триметилсилиловых эфиров.

# опыта	R _f COOH (1a-h)	R _f COOH : CISi(CH ₃) ₃ (моль)	R _f COOSi(CH ₃) ₃ (4a-h)	Выход R _f Si(CH ₃) ₃ (3а- h) , %
1	1a	1:3	4a	(3a) 84
2	1b	1:6	4b	(3b) 83

3	1c	1:3	4c	(3c) 25
4	1b	1:1	4d	(3d) 83
5	1 g	1:3	4g	(3g) 86
6	1 d	1:3	4d	(3d) 83
7	1e	1:3	4e	(3e) 75
8	1 h	1:1	4g	(3g) 79
9	1f	1:1	4c	(3c) 26
10	1 h	1:6	4h	(3h) 81
11	1f	1:6	4f	(3f) 28

Экспериментальная часть

Общий метод синтеза фторсодержащих арилсиланов из соответствущих калиевых солей фторсодержащих карбоновых кислот

Гидроксид калия 23.7 г (0.42 моль) растворяют в 150 мл метанола и при перемешивании при комнатной температуре прибавляют раствор (0.42 моль) фторсодержащей бензойной кислоты **1** в 200 мл метанола, перемешивают 30 минут, выпавший осадок отфильтровывают и сушат на воздухе. Получают калиевую соль фторсодержащей бензойной кислоты **2**.

Полученную калиевую соль фторсодержащей бензойной кислоты **2** (0.36 моль) при перемешивании прибавляют в 100 мл растворителя, затем добавляют 47.7 г (0.44 моль) триметилхлорсилана. После чего реакционную смесь нагревают до 70°С, выдерживают в течение 1 часа, затем температуру доводят до начала газовыделения и выдерживают при данной температуре до ее окончания, раствор охлаждают, выливают в воду, нижний слой отделяют, сушат сульфатом магния, фильтруют и перегоняют.

Общий метод синтеза фторсодержащих арилсиланов из соответствущих силиловых эфиров карбоновых кислот

К 150 г (1.38 моль) триметилхлорсилана добавляют при перемешивании (1,25 моль) фторсодержащей карбоновой кислоты **1** и нагревают до кипения, контролируя при этом скорость газовыделения. Затем отгонят избыток триметилхлорсилана и продукт перегонят в вакууме.

К полученному (триметил)силиловому эфиру фторсодержащейбензойной кислоты **4** (0,08 моль) добавляют при перемешивании 100 мл растворителя и 0,3 г (0,004 моль) хлористого калия, нагревают до начала газовыделения и перемешивают при этой температуре до его

окончания, после чего раствор охлаждают до комнатной температуры и выливают в воду. Нижний слой отделяют, сушат над сульфатом магния, фильтруют, перегоняют.

Спектральные данные силанов приведены в литературе: **3a** [11], **3b** [13], **3c** [13], **3d** [13,14,15], **3e 3f** [11], **3g** [12], **3h** [12].

Триметил(2,3,5,6-тетрафтор-4-метилфенил)силан (3е).

Т.кип. 198 0 С. Найдено (%): C, 50,79; H, 5,06; F, 32,27. $C_{10}H_{12}F_{4}Si$. Вычислено (%): C, 50,85; H, 5,08; F, 32,20. ЯМР 1 Н δ : 0.55 (c, 9H, Si(CH₃)₃), 2.15 (c, 3H, CH₃); ЯМР 19 F δ : -128,5 (c, 2F 2,6), -140,2 (c, 2F 3,5) .

Список литературы

- 1. V.A. Montes, G. Li, R. Pohl, J. Shinar, P. Anzenbacher Jr; Adv. Mater., 2004, 16, 2001;
- 2. M. Matsui, K. Shirai, N. Tanaka, K. Funabiki, H. Muramatsu, K. Shibata, Y. Ohgomori, Y. Ohgomori, *J. Mater. Chem.*, **1999**, v.9, p. 2755
- 3. S.L. Malhotra, патент США **1998**, 5744273;
- 4. M. Fild, O. Glemser, G. Christoph, Angewandte Chemie, 1964 76, p. 953;
- 5. .C. Edmonson, A.E. Jukes, H. Gilman, Journal of Organometallic Chemistry, 1970, 25, 273-276;
- 6. C. Tamborski, E.J. Soloski, Journal of Organometallic Chemistry, 1969, 17, 185-192;
- 7. A.J. Oliver, W.A.G. Graham, Journal of Organoelemental Chem., 1969, 19, 17-27;
- 8. V.V. Bardin, L.S. Pressman, L.N. Rogoza, G.G. Furin, *J. Gen. Chem. USSR*, **1992**, 62, 2342-2349;
- 9. А. Степанов, Электрохимия, 2000, 36, 210-218;
- 10. Kashiwabara, M. Tanaka, Organometallics, 2006, 25, 4648-4652;
- 11. X. Chen, V. Kumar, D.M. Lemal, S. Ramanathan, D. Sang; J. Org. Chem., 2012, 77, 2, 966-970;
- 12. Kuroda, Ishikawa; *Nippon Kagaku Zasshi*; **1970**, , 91, 489- 494;
- 13. Tamborski, Soloski; J. Org. Chem., 1969, 17, 185-188;
- 14. Bardin; Russian Chemical Bulletin., 1997, 46, 4, 780-785;
- 15. M. Fujita, M. Obayashi, T. Hiyama; *Tetrahedron*, **1988**, 44, 13, 4135-4146;

Статья представлена членом редколлегии С.М. Игумновым