УДК 620.22 - 617.3: 661.635.41 + 549.454.2; 539.4

ВЛИЯНИЕ ФТОРА НА СВОЙСТВА АПАТИТОВ И СИНТЕЗ ФТОРСОДЕРЖАЩИХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

В.М. Скачков¹, Е.А. Богданова², В.Д. Рябокрыс³, О.В. Папоротный³

¹Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук, ИХТТ УрО РАН, 620108, Россия, Екатеринбург, ул. Первомайская, 91.

²Акционерное общество «Гиредмет», АО «Гиредмет», 111524, Россия, Москва, ул. Электродная, 2.

³Федеральное государственное бюджетное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», ФГАОУ ВО УрФУ, 620002, Россия, Екатеринбург, ул. Мира, 19.

e-mail: skachkov@ihim.uran.ru

Аннотация: В работе осуществлен синтез фторзамещенных апатитов на основе гидроксиапатита и композиционных материалов фторапатит – нестехиометрический оксид титана и фторапатит – диоксид циркония. Изучено поведение компонентов в системах $Ca_{10}(PO_4)_6F_2$ - TiO_x и $Ca_{10}(PO_4)_6F_2$ - ZrO₂ в широком интервале температур и концентраций. Показано влияние фазового состава от содержания фтора и количества вводимой добавки на прочностные характеристики материала.

Ключевые слова: гидроксиапатит, фторапатит, диоксид циркония, нестехиометрический оксид титана, композиционные материалы, микротвердость

Введение

Широко используемый, благодаря сходству с минеральной составляющей костной ткани, биоматериал – гидроксиапатит (ГАП) состава $Ca_{10}(PO_4)_6(OH)_2$, применяется на практике в различных областях медицины [1]. Анионное замещение в структуре гидроксиапатита группы OH⁻ на SiO₄⁴⁻, F⁻, Cl⁻ или CO₃²⁻ приводит к изменению параметров кристаллической решетки, что влияет на кристалличность и, следовательно, растворимость апатитов, а это может привести к повышенным способностям к связыванию с костью, антибактериальную активность и остеоинтеграцию [2, 3]. ГАП обладает выраженным остеотропным поведением в биологических средах [4-6], однако, как биокерамический материалы он обладает низкими прочностными характеристиками, что не позволяет

использование для костных тканей, испытывающих регулярные значительные механические нагрузки.

Повысить твердость и прочность биоматериалов на основе апатитов можно модифицированием структуры, в том числе и за счет механосинтеза кристаллических апатитов армирующими добавками (CaF₂, SiO₂, TiO₂, ZrO₂, Al₂O₃ и др.) [7-10]. Во время термообработки композиционных материалов происходит взаимодействия между апатитом и армирующей фазой, часто с изменением фазового состава за счет физико-химических процессов происходящих в системах, это изменяет микроструктуру и, соответственно, механические и медико-биологические свойства.

В настоящей работе изучены свойства керамических материалов на основе фторапатита (Ca₁₀(PO₄)₆F₂) (ФАП), с добавлением диоксида циркония и нестехиометрического оксида титана, образующих системы: Ca₁₀(PO₄)₆F₂- ZrO₂ и Ca₁₀(PO₄)₆F₂- TiO_x, где x=1.5÷1.9; и свойства апатитов с разной степенью анионного замещения в ГАП ОН⁻-группы на F⁻:

 $Ca_{10}(PO_4)_6(OH)_2 + xF^- = Ca_{10}(PO_4)_6(OH)_{(2-x)}F_x + xOH^-$ (x=1, 1.5, 2) [11].

Фторапатит изоморфен гидроксиапатиту, при этом растворимость фторапатита ниже растворимости гидроксиапатита и стабилизирующее действие фтор оказывает не только в случае полного, но и частичного замещения групп ОН⁻. Анализ экспериментальных данных (рис. 1) позволяет сделать вывод о том, что включение фтора в структуру апатита способствует получению материала с улучшенными прочностными характеристиками, поскольку увеличивает устойчивость к биодеградации и воздействию кислот. Также выявлены особенности химического взаимодействия ФАП с армирующими добавками при термической обработке, и влияние добавок на прочность при отжиге.

Рисунок 1. Растворимость апатитов в зависимости от состава

Экспериментальный раздел

Суспензии ФАП с разной степенью замещения составов: $Ca_{10}(PO_4)_6(OH)_{(2-x)}F_x$ (x=1, 1.5, 2) получали по методике осаждения из растворов [11] с последующей фильтрацией и сушкой на воздухе, порошки (рис.2 *a*) аттестовали рентгенофазовым анализом (РФА), который выполняли на дифрактометрах Shimadzu и ДРОН-2.0, излучение CuKa, интервал углов 10° £ 2Q £ 70°, шаг съемки 0.03° , время на точку 2 секунды, идентификацию фаз осуществили с помощью картотеки Powder Diffraction File JCPDSD-ICDD PDF2 (set's 1-47). Нестехиометрический оксида титана (рис. 2 *в*) TiO_x (x=1.5÷1.9) получали путем обжига титановой стружки в печи при температуре 600°C в течение двух часов. Диоксид циркония (рис. 2*г*) ZrO₂ (ч, ТУ 6-09-2486-77). Компоненты перемешивали без добавления гомогенизатора в вибрационной мельнице (MLW 4000 KM 1) с агатовыми ступкой и шариком в течение 30 мин.

Механохимическая активация позволяет дисперсное повысить состояние компонентов для достижения в дальнейшем высокопрочного состояния, дополнительно в процессе измельчения происходит разрыв связей, что приводит к образованию новых химических соединений в результате механохимических реакций [12]. Полученные в результате механоситеза композиционные смеси и порошки с разной степенью замещения фтора в ФАП формовали в таблетки массой 0.5-1.0 г, проводили одноосным двусторонним прессованием без введения связующего в цилиндрической стальной пресс-форме диаметром 10 мм на гидравлическом ручном прессе без выдержки при комнатной температуре и давлении 20 МПа. Обжиг образцов производили в муфельной печи Nabertherm L 9/11 в интервале температур 25-1200 °С с шагом 200 °С, скорость нагрева составляла 10 °С/мин с выдержкой 1 час в воздушной атмосфере. В качестве контрольного образца параллельно исследовали ГАП (рис.2 б) состава $Ca_{10}(PO_4)_6(OH)_2$ [13], но его термообработку проводили только до 1000 °C, так как известно, что ГАП, полученный осаждением из растворов, при 800 °С начинает разлагается с образованием Са₃(PO₄)₂ трикальцийфосфата (ТКФ) [14, 15].

Измерение микротвердости композиционных материалов методом Виккерса проводили на микротвердомере ПМТ-3М с нагрузкой 0.98 H (100 г) и временем нагружения 10 с. Предел прочности на сжатие определяли при комнатной температуре на электромеханической универсальной испытательной машине Liangong Group CMT-5L (КНР) с автоматическим управлением и обработкой данных на ПК программой MaterialTest 3.0, класс точности 0.5, максимальная нагрузка 5 кН (~500 кг). Морфологические особенности исследовали методом сканирующей электронной микроскопии (СЭМ) на

микроскопе JEOL JSM 6390 LA (Япония), коэффициент увеличения от x5 до x300000, разрешающая способность 3.0 нм при 30 кВ.

Рисунок 2. Морфология исходных веществ, $a - \Phi A \Pi - Ca_{10}(PO_4)_6 F_2$ высушенный при 25°C; $\delta - \Gamma A \Pi - Ca_{10}(PO_4)_6(OH)_2$ высушенный при 25°C; $\beta - нестехиометрический оксид титана - TiO_x; г - диоксид циркония - ZrO_2.$

Обсуждение результатов

Результаты отжига фторзамещенной керамики

Введение фторид-ионов в апатиты оказывает влияние на поведение керамики в процессе обжига. Присутствие фтора в кристаллической решетке, по мере увеличения содержания ФАП препятствуют разложению апатитов на ТКФ, структурно стабилизируя фторзамещенный ГАП, полученный осаждением из раствора, до температур разложения, характерных для апатитов, полученного твердофазным синтезом [14]. При температурной обработке керамики происходит спекание, увеличивается плотность материала, теряется сорбционная и кристаллическая вода, что приводит к изменению линейных параметров и снижение веса (табл. 1).

Исследуемый образец	Изменение линейных параметров, ±∆h, %					
песледуемын өөризец	200°C	400°C	600°C	800°C	1000°C	1200°C
ГАП Ca ₁₀ (PO ₄) ₆ (OH) ₂	-2.17	-1.86	-2.11	-3.23	-7.94	—
ФАП Ca ₁₀ (PO ₄) ₆ (OH)F	-2.38	-5.63	-5.95	-7.54	-15.32	-17.54
ФАП Ca ₁₀ (PO ₄) ₆ (OH) _{0.5} F _{1.5}	-0.35	-1.75	-1.49	-2.80	-8.22	-12.5
$\Phi A \Pi Ca_{10} (PO_4)_6 F_2$	-0.34	-1.02	-1.7	-3.06	-11.14	-14.2
Изменение массы, ±∆m, %						
ГАП Ca ₁₀ (PO ₄) ₆ (OH) ₂	-4.30	-4.78	-6.4	-8.04	-11.8	_
ФАП Ca ₁₀ (PO ₄) ₆ (OH)F	-4.12	-6.15	-6.79	-8.97	-9.44	-9.55
ФАП Ca ₁₀ (PO ₄) ₆ (OH) _{0.5} F _{1.5}	-3.29	-5.84	-6.46	-8.67	-9.08	-9.19
ФАП Ca ₁₀ (PO ₄) ₆ F ₂	-3.17	-6.10	-6.81	-9.26	-9.82	-10.06

Таблица 1. Изменение параметров исследуемых образцов стехиометрического ГАП и фторзамещенных ФАП при разных температурах.

По мере спекания и уплотнения апатитов, возрастала их твердость. Экспериментально установлено, что полностью замещенный фторапатит имеет наилучшие прочностные характеристики (табл. 2) и обладает равномерной плотной структурой, при этом однозамещенный ФАП (Ca₁₀(PO₄)₆(OH)F) набирал максимальную твердость после отжига при 1000 °C. После термообработки при 1200 °C во всех модификациях ФАП обнаруживается упрочняющая фаза – фторид кальция, до 10%.

Твердость по Виккерсу (HV), МПа Исследуемый образец 200°C 25°C 400°C 600°C 800°C 1000°C 1200°C ГАП Ca₁₀(PO₄)₆(OH)₂ 71 87 52 53 75 183 _ $\Phi A \Pi Ca_{10}(PO_4)_6(OH)F$ 63 80 142 116 134 406 244 129 $\Phi A \Pi Ca_{10} (PO_4)_6 (OH)_{0.5} F_{1.5}$ 61 82 108 156 179 398 $\Phi A \Pi Ca_{10} (PO_4)_6 F_2$ 77 163 143 144 268 473 65

Таблица 2. Микротвердость стехиометрического ГАП и фторзамещенных ФАП при различных температурах.

Керамика из ГАП, полученного гидрохимическим путем уже при термообработке при 1000 °С растрескивается (рис. 3), но продолжает набирать твердость.

Рисунок 3. Морфология поверхности ГАП после термообработки при 1000°С.

После отжига при 1000 °С ГАП содержал до 30% фазы ТКФ, при том, что фторзамещенные ФАП только при 1200°С частично разлагались с образованием CaF₂ и Ca₃(PO₄)₂. Содержание ТКФ, %:

 $Ca_{10}(PO_4)_6(OH)F - 20$, $Ca_{10}(PO_4)_6(OH)_{0.5}F_{1.5} - 10$, $Ca_{10}(PO_4)_6F_2$ – methee 1.

Результаты отжига композиционной керамики ФАП-ТіО_х

Получить керамику с высокой твердостью, прочностью и обладающую устойчивость к воздействию высоких температур возможно путем введения в ее состав армирующих добавок, таких как оксиды титана и циркония. ГАП- и ФАП-керамика с включением соединений титана, относятся к биоинертным материалам, не вызывающим побочных реакций [16]. В таблицах 3 и 4 представлены изменения в композиционных материалах ФАП-ТіО_х, при различном содержании нестехиометрического оксида титана в процессе термообработки.

Таблица 3. Изменение параметров композиционных материалов ФАП-ТіО_х при разных

Online journal "Fluorine notes" ISSN 2071-4807, Vol. 2(159), 2025

температурах.						
Исспелуемый образец	Изменение линейных параметров, ±Δh, %					
песледуемын өөризец	200°C 400°C		600°C	800°C	1000°C	1200°C
ФАП-10% TiO _x ,	-0.33	0.50	-7.13	-6.30	-3.81	-3.65
ФАП-15% TiO _x ,	0	0.96	1.28	1.44	-4.01	1.28
ΦAΠ-20%TiO _x ,	-0.47	1.09	-0.31	1.87	3.12	2.18
ФАП-30% TiO _x ,	0.37	1.10	1.66	1.10	-0.55	5.89
Изменение массы, ±∆m, %						
ФАП-10% TiO _x ,	-6.10	-3.07	-1.89	-0.95	-3.71	-4.32
ФАП-15% TiO _x ,	0.68	3.16	4.06	4.32	0.40	-0.64
$ΦA\Pi-20\%$ TiO _x ,	-1.35	1.00	1.85	1.56	-3.64	-5.26
ФАП-30% TiO _x ,	1.06	3.03	3.61	2.01	-6.26	-10.16

Таблица 4. Микротвердости композиционных материалов $\Phi A \Pi$ -TiO_x при различных температурах.

Исспелуемый образен	Твердость по Виккерсу (<i>HV</i>), МПа						
песледуемын өөризец	25°C	200°C	400°C	600°C	800°C	1000°C	1200°C
ФАП-10% TiO _x ,	72	150	182	148	153	260	303
ФАП-15% ТіО _х ,	86	117	200	193	130	293	306
Φ АП-20% TiO _x ,	60	153	195	156	124	201	282
ФАП-30% ТіО _х ,	100	151	150	147	100	120	270

Композиционная керамика ИЗ $\Phi A \Pi$ с армирующими добавками нестехиометрического оксида титана при термообработке растрескивается (рис.4), при этом продолжая набирать твердость. Лучшие значения по твердости достигались при введении 10 и 15% нестехиометрического оксида титана. Фазовый состав по мере температур увеличения отжига менялся за счет постепенного перехода нестехиометрического оксида титана к диоксиду, и после отжига при 1200 °C более 95% титан был представлен в виде диоксида титана, также образуется до 10% фторида кальция, выделившегося из ФАП.

Рисунок 4. Морфология поверхности ФАП-15% ТіО_х после отжига при 1000°С.

Результаты отжига композиционной керамики ФАП-ZrO₂

В таблицах 5 и 6 представлены изменения в композиционных материалах ФАП-ZrO₂, при различном содержании диоксида циркония и термообработке.

Изменение линейных параметров, ±∆h, %					
200°C	400°C	600°C	800°C	1000°C	1200°C
-0.14	-0.14	-0.29	-1.88	-16.91	-16.91
-0.80	-1.92	-2.24	-2.72	-10.72	-12.00
0	-2.50	-2.50	-3.33	-8.33	-14.17
-0.97	-2.74	-2.90	-2.90	-9.84	-11.29
ие массь	I, ±Δm, %	6	L	I	I
-1.97	-4.85	-5.85	-8.00	-8.06	-8.32
-1.7	-4.47	-5.68	-7.28	-7.68	-7.97
-1.72	-4.35	-5.44	-6.97	-7.30	-7.70
	Изм 200°С -0.14 -0.80 0 -0.97 ие массы -1.97 -1.7 -1.72	Изменение л 200°С 400°С -0.14 -0.14 -0.80 -1.92 0 -2.50 -0.97 -2.74 ие массы, ±Δm, 9 -1.97 -4.85 -1.7 -4.47 -1.72 -4.35	Изменение линейных 200°С 400°С 600°С -0.14 -0.14 -0.29 -0.80 -1.92 -2.24 0 -2.50 -2.50 -0.97 -2.74 -2.90 ие массы, ± Δ m, % -1.97 -4.85 -5.85 -1.7 -4.47 -5.68 -1.72 -4.35 -5.44	Изменение линейных параме 200°С 400°С 600°С 800°С -0.14 -0.14 -0.29 -1.88 -0.80 -1.92 -2.24 -2.72 0 -2.50 -2.50 -3.33 -0.97 -2.74 -2.90 -2.90 ие массы, ± Δ m, % -1.97 -4.85 -5.85 -8.00 -1.7 -4.47 -5.68 -7.28 -1.72 -4.35 -5.44 -6.97	Изменение линейных параметров, ±∆ 200°С 400°С 600°С 800°С 1000°С -0.14 -0.14 -0.29 -1.88 -16.91 -0.80 -1.92 -2.24 -2.72 -10.72 0 -2.50 -2.50 -3.33 -8.33 -0.97 -2.74 -2.90 -2.90 -9.84 ие массы, ±∆m, % -1.97 -4.85 -5.85 -8.00 -8.06 -1.7 -4.47 -5.68 -7.28 -7.68 -1.72 -4.35 -5.44 -6.97 -7.30

Таблица 5. Изменение параметров композиционных материалов ФАП-ZrO₂ при разных температурах.

$\Phi A\Pi$ -20%ZrO ₂	-1.57	-4.05	-5.27	-6.79	-7.13	-7.56
	110 /		0.27	0.7.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.000

Таблица 6. Микротвердости композиционных материалах ФАП-ZrO₂ при различных температурах.

Исследуемий образец	Твердость по Виккерсу (HV), МПа						
исследуемый образец	25°C	200°C	400°C	600°C	800°C	1000°C	1200°C
$ΦA\Pi$ -5%ZrO ₂	90	89	253	198	157	473	517
ΦΑΠ-10%ZrO ₂	76	112	215	214	170	395	312
ΦAΠ-15%ZrO ₂	88	111	178	178	199	281	396
ФАП-20%ZrO ₂	94	134	167	215	148	375	314

Керамика из ФАП с диоксидом циркония при высокотемпературной обработке остается плотной, без трещин (рис. 5), с высокой твердостью. На микрофотографии хорошо видны вкрапления диоксида циркония (светлые участки).

Рисунок 5. Морфология поверхности композиционного материала ФАП-10% ZrO₂ после термообработки при 1000°C.

Фазовый состав композиционных материалов после отжига при 1200°С изменяется, образуется CaF₂ в количестве ~10%, также при высоких температурах возрастает

кристалличность материала. Диоксид циркония выполняет роль стабилизатора биокерамик, предотвращающий образование ТКФ.

Результаты испытаний на прочность

Была проведена оценка предела прочности на сжатие в зависимости от качественного и количественного состава полученных в ходе работы керамических образцов (см. таблицу 7). Подвергались сжатию образцы цилиндрической формы (Æ=10мм; h=10мм) после высокотемпературной обработки при 1000 и 1200°C.

Таблица 7. Результаты оценки пределов прочности на сжатие ГАП, ФАП, композиционных материалов и упрочняющих фаз.

Исспализици образац	Предел прочности на сжатие (S_{CM}), МПа					
пселедуемый образец	1000°C	1200°C				
ГАП Са10(РО4)6(ОН)2	511	_				
ФАП Са ₁₀ (РО ₄) ₆ (ОН)F	448	570				
ФАП Са ₁₀ (РО ₄) ₆ (ОН) _{0.5} F _{1.5}	498	400				
ФАП Са10(РО4)6F2	518	549				
ФАП-10%ТіО _х ,	-	221				
ФАП-15%ТіО _х ,	-	139				
ФАП-20%ТіО _х ,	-	214				
ФАП-30%ТіО _х ,	_	202				
ФАП-5%ZrO ₂	_	559				
ФАП-10%ZrO ₂	-	549				
ФАП-15%ZrO ₂	-	550				
ФАП-20%ZrO ₂	-	442				
CaF ₂	401	-				
ZrO ₂	506	_				

Выводы

В результате работы изучен упрочняющий и стабилизирующий эффект воздействия фтора на биокерамику на основе наноструктурированного осажденного фторзамещенного ГАП, а также экспериментально определен упрочняющий и стабилизирующий эффект посредством механохимического армирования ФАП оксидами титана и циркония, даже при высокотемпературном отжиге – 1200 °C ФАП разлагается незначительно с образованием менее 10% фторида кальция, который в свою очередь тоже является упрочняющей фазой. Определены основные характеристики полученных материалов: фазовый состав, морфология, линейная усадка, микротвердость, предел прочности сжатие. на Экспериментально установлено, что наиболее перспективным для разработки биокомпозитов содержащие диоксид циркония 5-10%. являются материалы, Нестехиометрические оксиды титана, вопреки ожиданию, как упрочняющая фаза в композиционном материале привели к его растрескиванию. Композиционный материал из $\Phi A\Pi$ – диоксид циркония обладает плотной равномерной структурой с высокой степенью кристалличности и прочностью, а это делает его перспективным материалом для продолжения изучения с целью применения в медицине.

Благодарности

Работа выполнена в соответствии с государственным заданием и планами НИР ФГБУН «Институт химии твердого тела Уральского отделения РАН» (№ 124020600007-8).

Список литературы

1. Mondal S., Park S., Choi J., Vu T.T.H., Doan V.H.M., Vo T.T., Lee B., Oh J., Hydroxyapatite: A journey from biomaterials to advanced functional materials, Advances in Colloid and Interface Science, **2023**, 321, 103013. https://doi.org/10.1016/j.cis.2023.103013.

2. Chkirate K., Azgaou K., Elmsellem H., El Ibrahimi B., Sebbar N.K., Anouar E.H., Hajjaji S.E., Essassi E.M., Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl)methyl]benzimidazole against carbon steel corrosion in 1M HCl solution: Combining experimental and theoretical studies, Journal of Molecular Liquids, **2021**, 321, 114750. https://doi:10.1016/j.molliq.2020.114750.

3. Safari-Gezaz M., Parhizkar M., Asghari E., Investigation of the structural properties of Si⁴⁺-doped HAP coatings on Ti-6Al-4V substrate as a corrosion barrier in biomedical media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, **2024**, 699, 134742. https://doi.org/10.1016/j.colsurfa.2024.134742.

4. В. М. Безруков, А. С. Григорьян, Гидроксиапатит как субстрат для костной пластики: теоретические и практические аспекты проблемы, Стоматология, **1996**, 75 (5), 7-12.

5. Г. В. Акопян, А. Г. Хачатрян, Использование остеопластических материалов стоматологической имплантологии, Ассоциация стоматологов в Армении. Научно-практический журнал, **2012**, 7(1), 10-14.

6. Строганова Е. Е., Новые технологии создания и применения биокерамики в востановительной медицине, Стекло и керамика, **2008**, 1, 36-38.

7. Д. И. Переверзев, Е. А. Богданова, К. В. Нефедова, Получение биокомпозитов на основе наноразмерного гидроксиапатита, допированного оксидом циркония и фторидом кальция, Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, **2020**, 12, 697-705. https://doi.org/10.26456/pcascnn/2020.12.697.

8. Е. А. Богданова, В. М. Скачков, К. В. Нефедова, Получение биокомозитов на основе наноразмерного гидроксиапатита с соединениями титана, Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, **2022**, 14, 521-530. https://doi.org/10.26456/pcascnn/2022.14.521.

9. Е. А. Богданова, И. М. Гиниятуллин, Д. И. Переверзев, В. М. Разгуляева, Влияние армирующих добавок на процессы спекания и упрочнения наноразмерного гидроксиапатита, Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, **2019**, 11, 548-554. https://doi.org/10.26456/pcascnn/2019.11.548.

10. Bogdanova E.A., Skachkova O.V., Skachkov V.M., Sabirzyanov N.A., Production of hydroxyapatite based fluorine-containing composite materials, Fluorine notes, **2017**, 5(114), 3-4. https://doi.org/10.17677/fn20714807.2017.05.02.

 Пат. 2652193 Российская Федерация, МПК С01В 25/32, Способ получения суспензии апатита, Е. А. Богданова, Н. А. Сабирзянов, В. М. Скачков; заявитель и правообладатель Институт химии твердого тела Уральского отделения РАН; опубл. 25.04.2018, Бюл. № 12. – 5 с.

12. Болдырев В. В., Механохимия и механическая активация твердых веществ, Успехи химии, **2006**, 75(3), 203-216.

13. Пат. 2406693 Российская Федерация, МПК С01В 25/32, Способ получения суспензии гидроксиапатита, Сабирзянов Н.А., Богданова Е.А., Хонина Т.Г.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН; опубл. 20.12.**2010**, Бюл. № 35. – 5 с.

14. С. М. Баринов, В. С. Комлев, Биокерамика в медицине, Москва: Наука, 2005, 284 с.

15. Е. А. Богданова, Н. А. Сабирзянов, Исследование термической устойчивости фторзамещенного ГАП, Материаловедение, 2015, 1, 52-56.

16. Placido, F., McLean, A., Ogwu, A. A., & Ademosu, W. (**2016**). Titanium dioxide coatings for medical devices. In Surgical Tools and Medical Devices, Second Edition (pp. 81-92). Springer International Publishing. https://doi.org/10.1007/978-3-319-33489-9_3