УДК 547.539.132: 547.538.141: 544.188 КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЁТ НЕКОТОРЫХ МОЛЕКУЛ ТРИФТОРМЕТИЛСТИРОЛОВ МЕТОДОМ DFT.

¹ Бабкин В.А., ¹ Андреев Д. С., ¹ Игнатов А.В., ¹ Кожухова А.В., ² Рахимов А.И., ² Рахимова Н.А, ³ Белоусова В.С., ^{2,4} Титова Е.С., ⁴ Денисюк А.Р., ⁶К.Ю. Прочухан.

¹Себряковский филиал Волгоградского государственного технического университета ² Волгоградский государственный технический университет

³ Первый московский государственный медицинский университет им И.М. Сеченова (Сеченовский университет)

⁴ Волгоградский государственный медицинский университет ⁵ Медицинский колледж Волгоградского государственного медицинского университета

Аннотация

Впервые выполнен квантово-химический расчет некоторых молекул трифторметилстиролов: 2-(трифторметил)стирол, 3-(трифторметил)стирол, 4-(трифторметил)стирол, методом DFT PBE0 в базисе 6-311G** с оптимизацией геометрии по всем параметрам стандартным градиентным методом. Получено оптимизированное геометрическое и электронное строение этих соединений. Теоретически оценена их кислотная сила (pKa= 30-32). Установлено, что молекулы относятся к классу очень слабых H-кислот (pKa>14).

Ключевые слова: квантово-химический расчет, метод DFT:PBE0/6-311G**, 2-(трифторметил)стирол, 3-(трифторметил)стирол, 4-(трифторметил)стирол, кислотная сила.

Введение

Фторсодержащие стиролы, как мономеры катионной полимеризации для получения полимерных продуктов до настоящего времени весьма мало изучены. Известно только, что экспериментально с целью получения смазочных загустителей для [1] исследовали масел или них В п-фторстирола изабутиленом. сополимеризацию Сополимеризацию с проводили в метиленхлориде в присутствии хлористого алюминия в различных условиях. Продукт наибольшего молекулярного веса 21 000 был −100°C. информация получен при Другая ПО полимеризации фторсодержащих стиролов практически отсутствует. Тем не менее, для получения фторированных стиролов необходимо знать условия полимеризации этих стиролов, используемые катализаторы и промоторы, природы растворителя на механизмы элементарных влияние актов, геометрическое и электронное строение используемых фторсодержащих стиролов и активных центров, а также некоторые другие.

Методическая часть

Целью настоящей работы является квантово-химический расчет некоторых молекул трифторметилсодержащих стиролов: 2-

(трифторметил)стирол (I), 3-(трифторметил)стирол (II), (трифторметил)стирол (III) [2] методом DFTP BE0 в базисе 6-311G** с оптимизацией геометрии по всем параметрам классическим градиентным методом, встроенным в программу Firefly [3], теоретическая оценка их кислотной силы, выяснение влияния на кислотную силу местоположения трифторметила в бензольном кольце стирола. Метод частично основан на исходном коде GAMESS (US) [4]. Рачеты проводились при приближении изолированной молекулы в газовой фазе. Для визуального представления модели молекулы использовалась известная программа MacMolPlt [5].

Результаты расчетов

Оптимизированное геометрическое и электронное строение, общая энергия и электронная энергия молекул: (I), (II), (III) получены методом DFT-РВЕО в базисе 6-311G** и показаны на рис. 1-3 и в табл.1-4. Значение кислотной силы данных молекул определяли по формуле для DFT:PBE0/6- $311G^{**} - pKa = 51.048 - 150.078q_{max}^{H+} (q_{max}^{H+} = +0,138),$ где q_{max}^{H+} — максимальный заряд на атоме водорода, рКа — универсальный показатель кислотности.

- (I): q_{max}^{H+}= +0,138 (см. табл. 1),рКа=30; (II): q_{max}^{H+}= +0,129(см. табл. 2), рКа=32;
- (III): q_{max}^{H+}= +0,130 (см. табл. 3), pKa=32;

Квантово-химический молекул расчет некоторых трифторметилсодержащих стиролов: (I), (II), (III) впервые выполнен нами методом DFT PBE0 в базисе 6-311G** с оптимизацией геометрии по всем стандартным градиентным методом. Оптимизированное параметрам геометрическое электронное строение этих соединений получено. И Кислотная сила изучаемых стиролов находится в диапозоне рКа=30 - 32. Данные молекулы относятся к классу очень слабых H-кислот (pKa>14). Кислотная сила не зависит от местоположения трифторметила в бензольном кольце стирола.

Рис.1. Геометрическое и электронное строение молекулы (I) (Е₀= -1696176 кДж/моль)

Таблица 1.

Длины	R,A	Валентные углы	Град	Атом	Заряды на атомах
связей					молекулы
C(1)-C(2)	1,33	C(1)-C(2)-C(3)	128	C(1)	-0.204
C(2)-C(3)	1,48	C(2)-C(3)-C(4)	127	C(2)	-0.148
C(3)-C(4)	1,41	C(3)-C(4)-C(5)	120	C(3)	0.018
C(4)-C(5)	1,39	C(5)-C(6)-C(7)	119	C(4)	-0.335
C(5)-C(6)	1,39	C(7)-C(8)-C(3)	122	C(5)	-0.033
C(6)-C(7)	1,39	C(3)-C(4)-C(9)	123	C(6)	-0.104
C(8)-C(3)	1,40	C(4)-C(9)-F(10)	113	C(7)	-0.080
C(4)-C(9)	1,51	C(4)-C(9)-F(11)	112	C(8)	-0.090
F(10)-C(9)	1,34	C(4)-C(9)-F(12)	112	C(9)	0.772
F(11)-C(9)	1,35	F(10)-C(9)-F(11)	107	F(10)	-0.198
F(12)-C(9)	1,34	F(11)-C(9)-F(12)	106	F(11)	-0.211
H(13)-C(1)	1,08	F(10)-C(9)-F(12)	107	F(12)	-0.216
H(14)-C(1)	1,08	H(13)-C(1)-C(2)	120	H(13)	0.125
H(15)-C(2)	1,09	H(13)-C(1)-H(14)	117	H(14)	0.138
H(16)-C(8)	1,09	H(14)-C(1)-C(2)	123	H(15)	0.125
H(17)-C(5)	1,08	H(15)-C(2)-C(1)	118	H(16)	0.104
H(18)-C(6)	1,08	H(15)-C(2)-C(3)	114	H(17)	0.116
H(19)-C(7)	1,08	H(16)-C(8)-C(3)	118	H(18)	0.110
		H(16)-C(8)-C(7)	120	H(19)	0.109
		H(17)-C(5)-C(4)	119		
		H(17)-C(5)-C(6)	120		
		H(18)-C(6)-C(5)	120		
		H(18)-C(6)-C(7)	121		
		H(19)-C(7)-C(6)	121		
		H(19)-C(7)-C(8)	120		

Оптимизированные длины связей, валентные углы и заряды на атомах молекулы (I), полученные методом DFT:PBE0/6-311G**.

Рис.2. Геометрическое и электронное строение молекулы (II)

(Е0=-1696196 кДж/моль)

Таблица 2.

Оптимизированные длины связей, валентные углы и заряды на атомах молекулы (II), полученные методом DFT:PBE0/6-311G**.

Длины	R,A	Валентные углы	Град	Атом	Заряды на атомах
связей					молекулы
C(1)-C(2)	1,33	C(1)-C(2)-C(3)	127	C(1)	-0.202
C(2)-C(3)	1,47	C(2)-C(3)-C(4)	123	C(2)	-0.112
C(3)-C(4)	1,40	C(3)-C(4)-C(5)	121	C(3)	-0.127
C(4)-C(5)	1,38	C(5)-C(6)-C(7)	119	C(4)	0.047
C(5)-C(6)	1,40	C(7)-C(8)-C(3)	121	C(5)	-0.373
C(6)-C(7)	1,38	C(8)-C(3)-C(2)	119	C(6)	0.005
C(7)-C(8)	1,39	C(4)-C(5)-C(9)	121	C(7)	-0.118
C(8)-C(3)	1,40	C(6)-C(5)-C(9)	119	C(8)	-0.037
C(5)-C(9)	1,50	C(5)-C(9)-F(10)	113	C(9)	0.744
F(10)-C(9)	1,34	C(5)-C(9)-F(11)	112	F(10)	-0.212
F(11)-C(9)	1,34	C(5)-C(9)-F(12)	112	F(11)	-0.206
F(12)-C(9)	1,34	F(10)-C(9)-F(11)	107	F(12)	-0.207
H(13)-C(1)	1,08	F(10)-C(9)-F(12)	107	H(13)	0.129
H(14)-C(1)	1,09	F(11)-C(9)-F(12)	107	H(14)	0.120
H(15)-C(4)	1,08	H(13)-C(1)-H(14)	117	H(15)	0.115
H(16)-C(2)	1,09	H(14)-C(2)-C(1)	118	H(16)	0.106
H(17)-C(8)	1,09	H(15)-C(4)-C(3)	120	H(17)	0.104

H(18)-C(7)	1,08	H(15)-C(4)-C(5)	119	H(18)	0.110
H(19)-C(6)	1,08	H(16)-C(2)-C(1)	118	H(19)	0.115
		H(16)-C(2)-C(3)	115		
		H(16)-C(8)-C(7)	120		
		H(17)-C(8)-C(3)	119		
		H(17)-C(8)-C(7)	120		
		H(18)-C(7)-C(6)	120		
		H(18)-C(7)-C(8)	120		
		H(19)-C(6)-C(5)	120		
		H(19)-C(6)-C(7)	121		

Рис.3. Геометрическое и электронное строение молекулы (III)

(Е0=-1696197 кДж/моль)

Таблица 3.

(III), полученные методом DFT:PBE0/6-311G**.						
Длины	R,A	Валентные углы	Град	Атом	Заряды на атомах	
связей					молекулы	
C(1)-C(2)	1,33	C(1)-C(2)-C(3)	127	C(1)	-0.201	
C(2)-C(3)	1,47	C(2)-C(3)-C(4)	123	C(2)	-0.114	
C(3)-C(4)	1,40	C(3)-C(4)-C(5)	121	C(3)	-0.074	
C(4)-C(5)	1,38	C(4)-C(5)-C(6)	121	C(4)	-0.053	
C(5)-C(6)	1,39	C(5)-C(6)-C(7)	120	C(5)	-0.030	
C(6)-C(7)	1,39	C(6)-C(7)-C(8)	120	C(6)	-0.332	
C(8)-C(3)	1,40	C(7)-C(8)-C(3)	121	C(7)	-0.033	
C(6)-C(9)	1,50	C(5)-C(6)-C(9)	119	C(8)	-0.080	
F(10)-C(9)	1,35	C(7)-C(6)-C(9)	121	C(9)	0.745	
F(11)-C(9)	1,34	C(6)-C(9)-F(10)	112	F(10)	-0.206	
F(12)-C(9)	1,34	C(6)-C(9)-F(11)	112	F(11)	-0.209	
H(13)-C(1)	1,08	C(6)-C(9)-F(12)	112	F(12)	-0.211	

Оптимизированные длины связей, валентные углы и заряды на атомах молекулы (III), полученные методом DFT:PBE0/6-311G**.

H(14)-C(1)	1,09	F(10)-C(9)-F(11)	107	H(13)	0.130
H(15)-C(2)	1,09	F(11)-C(9)-F(12)	107	H(14)	0.118
H(16)-C(7)	1,08	F(10)-C(9)-F(12)	107	H(15)	0.107
H(17)-C(8)	1,09	H(13)-C(1)-C(2)	121	H(16)	0.117
H(18)-C(4)	1,08	H(13)-C(1)-H(14)	117	H(17)	0.104
H(19)-C(5)	1,08	H(14)-C(1)-C(2)	123	H(18)	0.105
		H(15)-C(2)-C(1)	118	H(19)	0.115
		H(15)-C(2)-C(3)	115		
		H(16)-C(7)-C(6)	120		
		H(16)-C(7)-C(8)	120		
		H(17)-C(8)-C(7)	120		
		H(17)-C(8)-C(3)	119		
		H(18)-C(4)-C(3)	120		
		H(18)-C(4)-C(5)	119		
		H(19)-C(5)-C(4)	120		
		H(19)-C(5)-C(6)	120		

Таблица 4.

Общая энергия (Е₀), максимальный заряд на атоме водорода (q_{max}^{H+}), кислотная сила (pKa)

Номер	Фторсодержащие	Ео кДж/моль	qmax ^{H+}	рКа
	стиролы			
1	2-(трифторметил)стирол	-1696176	0.138	30
2	3-(трифторметил)стирол	-1696196	0.129	32
3	4-(трифторметил)стирол	-1696197	0.130	32
4	5-(трифторметил)стирол	-1696008	0.132	31
5	6-(трифторметил)стирол	-1696188	0.136	31

Библиографический список

- 1. Алиев Ф.М. // Азербайджанский химический журнал. 1971. с.109.
- 2. Дж. Кеннеди. Катионная полимеризация олефинов. Изд-во «Мир» Москва, 1978 г. 431 с.
- 3. Alex A. Granovsky, Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. "General Atomic and Molecular Electronic Structure System". Journal of Computational Chemistry, Vol. 14, 1347-1363(1993). doi:10.1002/jcc.540141112
- 5. B. M. Bode, M. S. Gordon. "MacMolPlt: A graphical user interface for GAMESS". Journal of Molecular Graphics and Modelling, Vol. 16, No. 3, 1998, p. 133-138.