Поступило в редакцию: Март 2018

УДК 547.1

Реакции

перфторалифатических сульфонил галогенидов с тригалогенидами фосфора

А.А. Тютюнов^{аb}, Л.Ф. Ибрагимова^а, Н.Д. Каграманов^а, С.Р. Стерлин^а, С.М. Игумнов^{аb}

^аФедеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук, 119991, ГСП-1, Москва, В-334, ул. Вавилова, д. 28

 b ЗАО НПО "ПиМ-Инвест", 119991, Москва, ул. Вавилова, д. 28

e-mail: tuytuynov@rambler.ru

Аннотация: Показано, что фторалифатические сульфонилгалогениды под действием тригалогенидов фосфора восстанавливаются с образованием соответствующих дисульфидов, в фторсульфонильную, том числе содержащих такие функциональные группы как карбоксиметильную, а также трифторвинилокси-группу. Интермедиатами реакции являются перфторалкансульфинилгалогениды перфторалкансульфенгалогениды. и последних подтверждает получение аддуктов соответствующих сульфенгалогенидов с олефинами углеводородного ряда.

Ключевые слова: трифторметансульфонилбромид, перфторалкансульфонилгалогениды, диперфторалкилдисульфиды, фосфора трихлорид, фосфора трибромид.

Деоксигенирование S-O производных под действием галогенидов фосфора описано в 1871 году Michaelis'ом [1] и позднее исследовано рядом авторов [2-4]. Впоследствии было показано, что эта реакция имеет общий характер и с ее помощью можно осуществлять восстановление алифатических и ароматических сульфонилгалогенидов, сульфи- и сульфокислот, а также их солей соответствующих дисульфидов [5-9], причем было установлено, восстановительный потенциал РВг3 существенно превышает восстановительный потенциал PCI₃. В свою очередь сульфонилбромиды подвергаются восстановлению намного легче сульфонилхлоридов. В то же время показано, что реакция бензолсульфонилхлорида с PBr₃ при t>150°C приводит к образованию PhSO₂Br с выходом >90%, а не продуктов его восстановления [10].

Целью настоящей работы является выяснение особенностей взаимодействия перфторалифатических производных сульфи- и сульфокислот с тригалогенидами фосфора.

Нами найдено, что взаимодействие трифторметансульфонилбромида (1) с треххлористым фосфором (мольное соотношение 1 : PCI₃ = 1:1) уже при комнатной температуре приводит к образованию трифторметансульфинилхлорида (2), который можно выделить из реакционной смеси с выходом 40% [11].

Схема 1

$$CF_3SO_2Br + PCl_3 \xrightarrow{rt, 24 \text{ h}} CF_3S(O)Cl + P(O)BrCl_2$$
1 2 (40%)

При этом в процессе реакции образуется также P(O)Cl₃, бром и продукты более глубокого восстановления **1**.

Взаимодействие **1** с двумя эквивалентами PCl_3 при комнатной температуре в присутствии каталитических количеств DMF приводит к образованию дисульфида **3** и брома. Аналогично осуществляется реакция CF_3SO_2Br с PBr_3 . В этом случае реакция не требует катализа DMF, однако в процессе ее образуется обильный осадок $P(O)Br_3$ (т.пл. $50^{\circ}C$), поэтому ее более удобно осуществлять в среде ацетонитрила, в присутствии которого она ускоряется, и осаждения оксибромида фосфора не происходит. Причем при соотношении реагентов CF_3SO_2Br : $PBr_3 = 1:1$ конверсия **1** составляет 50% и наблюдается образование дисульфида **3**, что вероятно связано с нестабильностью первоначально образующегося $CF_3S(O)Br$, который, как было показано ранее, легко диспропорционирует на CF_3SO_2Br и CF_3SBr [12], и низкой устойчивостью трифторметансульфенбромида. В случае же соотношения CF_3SO_2Br : $PBr_3 = 1:2$ весь взятый в реакцию сульфонилбромид **1** восстанавливается до дисульфида **3**.

Схема 2

Yield 3: Hal =
$$Cl$$
 (57%), Br (87%)

Нами установлено, что трифторметансульфинилхлорид (2) не реагирует с PCl₃ даже при нагревании до 90÷100°С. В присутствии каталитических количеств DMF 2 начинает медленно реагировать с PCl₃ уже при комнатной температуре. Однако даже после нагревания реакционной смеси в запаянной ампуле при 90÷100°С в течение 5-6 часов конверсия 2 составляет только 58%, при этом образуется смесь дисульфида 3 и сульфенхлорида 4.

Схема 3

$$CF_3S(O)C1 + PCl_3 \xrightarrow{DMF (cat.)} CF_3SSCF_3 + CF_3SC1 + P(O)Cl_3$$

2 $3 (32\%) 4 (68\%)$

conversion of CF₃S(O)Cl 58%

В отличие от **1** сульфинилхлорид **2** с PBr₃ начинает медленно реагировать только при 90÷100°С. Однако в присутствии каталитических количеств DMF реакция медленно осуществляется уже при комнатной температуре. Причем в ходе реакции помимо основного продукта – дисульфида **3** – в качестве побочного продукта образуется сульфонилхлорид **5**, что скорее всего связано с диспропорционированием промежуточно образующегося трифторметансульфинилбромида. Последующий обмен сульфонильного атома брома на хлор приводит к образованию **5**, который в данных условиях PBr₃ не восстанавливается.

Схема 4

Взаимодействие трифторметансульфонилхлорида (**5**) с PBr₃ в среде ацетонитрила осуществляется при температуре 100°C в запаянной ампуле в течение 3-х часов с образованием дисульфида **3**. С менее реакционноспособным PCl₃ сульфонилхлорид **5** в этих условиях не реагирует.

Схема 5

$$CF_3SO_2C1 + 2 PBr_3 \xrightarrow{MeCN} CF_3SSCF_3$$
5

В отличие от трифторметансульфонилбромида (1) и хлорида **5** трифторметансульфонилфторид не реагирует с PBr₃ в среде ацетонитрила в запаянной ампуле при 100°C, что, скорее всего, определяется большей прочностью S-F-связи (~343 кДж/моль) по сравнению с S-CI и S-Br-связями (~241 и ~218 кДж/моль соответственно) [13]. Полученный результат в определенной степени согласуется с сообщением об устойчивости фтористого тионила к действию PCl₃ [14].

Высшие перфторалкансульфонилбромиды при действии PBr₃ в среде ацетонитрила так же гладко превращаются в соответствующие дисульфиды, в том числе и содержащие такие функциональные группы как фторсульфонильную, карбоксиметильную, а также трифторвинилокси-группу.

Схема 6

$$R_FSO_2Br + 2 PBr_3 \xrightarrow{MeCN} R_FSSR_F$$
6a-d 7a-d

$$\mathbf{R_F} =$$

a: -(CF₂)₄H (75%)

b: $-CF_2CF_2OCF(CF_3)CF_2OCF=CF_2$ (77%)

c: -CF2CF2OCF2CF2SO2F (70%)

d: -CF₂CF₂OCF(CF₃)CF₂OCF(CF₃)CO₂Me (70%)

В отличие от **6b** винилоксисульфонилбромид **8** в ходе реакции с PBr₃ образует циклический оксатиолан **9**, который, вероятно, получается в результате внутримолекулярного присоединения промежуточно образующегося сульфенбромида к трифторвинилокси-группе. Следует отметить, что использование в этой реакции PCl₃ приводит к образованию смеси BrCF₂-оксатиолана **9** и CICF₂-оксатиолана **9** в соотношении 3:1.

Схема 7

$$CF_2$$
= $CFOCF_2CF_2SO_2Br + 2 PBr_3$ \xrightarrow{MeCN} F F S F CF_2Br $\mathbf{8}$ $\mathbf{9}$ (70%)

Подобные циклизации, приводящие к пятичленным циклам, вообще типичны для перфторалифатических соединений. В литературе представлены примеры нуклеофильного и свободно-радикального образования перфторированных 1,3-оксатиолан-3,3-диоксидов [15-16], а так же ряд других реакций приводящих к пятичленным циклическим продуктам [17-18].

По всей вероятности восстановление сульфонил- и сульфинилгалогенидов осуществляется постадийно с участием сульфонил- и сульфинилтетрагалогенфосфоранов в качестве первичных интермедиатов реакции.

Схема 8

Генерация фторалифатических сульфенгалогенидов при восстановлении фторалкансульфонилгалогенидов тригалогенидами фосфора позволила предположить, что

проведение этой реакции в присутствии непредельных углеводородов может приводить к образованию вицинальных фторалкилтиогалогенидов (электрофильное присоединение CF₃SCI к циклическим и терминальным олефинам описано ранее [19]).

Действительно, реакция **1** с PCl₃ в присутствии циклогексена приводит к образованию β-галогентрифторметилтиоциклогексанов **10-11**, содержащих атомы как хлора, так и брома.

Схема 9

В свою очередь при восстановлении сульфонилбромида **1** PBr₃ в присутствии циклогексена в растворе ацетонитрила образуется смесь продуктов **11** (84%), **12**' (16%).

Аналогично реакция этилциклопент-3-енилкарбоксилата с **1** и PCl₃ приводит к образованию смеси стереоизомеров трифторметилтиохлоридов и бромидов.

С менее активными, чем циклоалкены, терминальными олефинами эта реакция осуществляется с образованием либо главным образом смеси марковниковского (**M**) и антимарковниковского (**a-M**) продуктов присоединения сульфенгалогенидов к олефину, либо дисульфида **3** и дибромида алкена.

Так, реакция **1** с PCl₃ в присутствии аллилтрифторацетамида приводит к образованию смеси региоизомеров **13-14** и незначительного количества дисульфида **3** и *N*-(2,3-дибромпропил)трифторацетамида.

Схема 10

$$\mathbf{R} = -\text{CH}_2\text{NHC(O)CF}_3$$
 13a: $M_{\text{Cl}} - 60\%$; 13b: $M_{\text{Br}} - 6.5\%$
14a: $a - M_{\text{Cl}} - 21.6\%$; 14b: $a - M_{\text{Br}} - 1.9\%$

Аналогичная реакция с PBr₃ приводит исключительно к дисульфиду **3** и дибромиду аллилтрифторацетамида, что можно объяснить относительно низкой стабильностью трифторметансульфенбромида.

В свою очередь, проведение реакции CF₃SO₂Br с PCl₃ в присутствии аллилбромида приводит к образованию дисульфида **3** в качестве единственного фторорганического продукта.

Схема 11

$$CF_3SO_2Br + \nearrow Br \xrightarrow{PCl_3 (2 \text{ eq.})} CF_3SSCF_3 + Br \xrightarrow{Br} Br + P(O)Cl_3$$

$$\mathbf{1} \qquad \qquad \mathbf{3} (80\%)$$

При действии PCl_3 на сульфонилбромид **1** в присутствии аллилацетата и каталитических количеств DMF реализуются оба варианта реакции: наблюдается образование как продуктов сопряженного галогентрифторметилтиилирования аллилацетата в виде смеси региоизомеров, так и дисульфида **3** и 2,3-дибромпропилацетата в соизмеримых количествах (**3** – 28%, M_{Cl} – 42%, а- M_{Cl} – 11%, M_{Br} – 12%, a- M_{Br} – 7%).

Трифторметансульфинат натрия (**15**) реагирует с PBr₃ с образованием дисульфида **3** (подобно образованию дифенилдисульфида при действии PCl₃ на PhSO₂Na [5]). Скорее всего, восстановлению **15** предшествует образование трифторметансульфинилбромида (см. [20]), превращающегося далее в **3**.

Регистрация продуктов постадийного восстановления фторалкансульфонилгалогенидов тригалогенидами фосфора — $R_FSO_2Hal \rightarrow R_FSOHal \rightarrow R_FSSR_F$ — позволяет считать, что цепь превращений, представленная на схеме 8, носит унитарный характер. В этой связи следует отметить, что получение продуктов трифторметилтиилирования электронодонорных гетероароматических соединений при действии на них смеси CF_3SO_2Na и PCI_3 можно объяснить не только восстановлением соответствующих трифторметилсульфоксидов [21], но и действием на них промежуточно образующегося трифторметансульфенхлорида 4 (см. [22]).

Таким образом, показано, что восстановление перфторалкансульфонилбромидов тригалогенидами фосфора может использоваться для синтеза фторалифатических дисульфидов, в том числе и функционализованных, и, в ряде случаев, продуктов перфторалкилтиилирования непредельных соединений.

Экспериментальная часть

ЯМР 1 Н, 19 F и 31 P спектры записаны на спектрометре "Bruker AVANCE-300" при 300, 282 и 121 МНz, соответственно, внешний стандарт CDCl $_{3}$. Химические сдвиги для 1 Н спектров приведены относительно остаточного сигнала растворителя (5 7,26) и даются в м.д. относительно TMC. Химические сдвиги спектров 19 F приведены в м.д. относительно CFCl $_{3}$. Слабопольные сдвиги имеют положительное значение. Химические сдвиги 31 P спектров приведены относительно 85% 19 H $_{3}$ PO $_{4}$. Масс-спектры записаны на масс-спектрометре Finnigan Polaris Q (Trace GC ultra). Элементный анализ выполнен в Лаборатории микроанализа ИНЭОС РАН. Метод синтеза сульфонилбромидов 1 1, 1 1, 1 2, 1 3, 1 3, 1 4, 1 5, 1 5, 1 6, 1 7, 1 8, 1 9, 1

Реакция CF₃SO₂Br с одним эквивалентом PCl₃.

Смесь 102,76 г (0,482 моль) трифторметансульфонилбромида (1) и 66,25 г (0,482 моль) треххлористого фосфора выдерживают в течение 20-24 часов при температуре $20 \div 25$ °C, далее нагревают до кипения, отгоняя на колонке Вигре продукты с температурой кипения $25 \div 60$ °C используя для их конденсации холодильник со смесью лед-вода. Получают 62,4 г дистиллята, содержащего по данным ЯМР 19 F-спектроскопии 5,8% CF $_3$ SSCF $_3$ (δ : -47); 5,8% CF $_3$ SCI (δ : -51); 15% CF $_3$ SO $_2$ Br (δ : -78) и 73% CF $_3$ S(O)CI (δ : -79). Анализ кубового остатка методом ЯМР 31 P-спектроскопии показывает, что он представляет собой смесь: P(O)BrCl $_2$ (δ : -29) и P(O)Cl $_3$ (δ : 2) соотношением 1:1.

К полученному дистилляту при 0÷5°С добавляют 5 г циклогексена и ректификацией выделяют 30 г (40%) сульфинилхлорида **2**, т.кип. 42-44°С, спектр ЯМР ¹⁹F δ : -77 (c, CF₃).

Полученный продукт использовался в дальнейших синтезах без дополнительной очистки.

Восстановление сульфонилбромидов 1, 6a-d, 8 трехбромистым фосфором (общая методика).

К смеси 54,14 г (0,2 моль) трехбромистого фосфора и 30 мл ацетонитрила при перемешивании и температуре 5÷10°С прибавляют по каплям (0,1 моль) сульфонилбромида **1**, **6a-d**, **8**. Смесь перемешивают при 20÷25°С в течение 3-х часов. Затем реакционную смесь порциями выливают на смесь льда с водой, нижний органический слой отделяют, промывают его несколько раз водой и перегоняют над P_2O_5 . Полученный продукт дополнительно очищают ректификацией.

Гексафтордиметилдисульфид (3).

Выход 87%, т.кип. 33÷34°С. ЯМР 19 F δ : -48 (c, SCF₃) (перед перегонкой следы Br_2 удаляют промыванием продукта водн. Na_2SO_3).

Дисульфид **3** может быть также получен реакцией сульфонилбромида **1** с PCl_3 , выход 57%.

Ди-4-гидроперфторбутилдисульфид (7а).

Выход 75%, т.кип. 189°C. Найдено (%): C, 19,28; H, 0,44; F, 64,77; S, 13,64. $C_8H_2F_{16}S_2$. Вычислено (%): C, 20,61; H, 0,43; F, 65,20; S, 13,75. ЯМР 1 Н δ : 5,87 (тт, 1H, $^2J_{HF}$ = 52 Γ ц, $^3J_{HF}$ = 4,8 Γ ц, HCF₂); ЯМР 19 F δ : -139,1 (д, 4F, $^2J_{FH}$ = 52 Γ ц, HCF₂), -130,6 (c, 4F, CF₂), -122,4 (c, 4F, CF₂), -91,1 (c, 4F, CF₂S).

Ди(перфтор-3,6-диокса-4-метилоктен-7-ил)дисульфид (7b).

Выход 77%, т.кип. 71÷73°С/0,5 Торр. Найдено (%): С, 21,30; F, 62,58; S, 8,04. С $_{14}$ F $_{26}$ O $_{4}$ S $_{2}$. Вычислено (%): С, 21,28; F, 62,51; S, 8,11. ЯМР 19 F $_{0}$: -147,3 (т, 1F, 3 J $_{FF}$ = 21 Гц, СFСF $_{3}$), -138,7 (дд, 1F, 3 J $_{FF-trans}$ = 113 Гц, 3 J $_{FF-cis}$ = 68 Гц, ОСF=СF $_{2}$), -125,2 (дд, 1F, 2 J $_{FF}$ = 85 Гц, ОСF=СF $_{2}$ -trans), -117,6 (дд, 1F, 2 J $_{FF}$ = 85 Гц, ОСF=СF $_{2}$ -cis), -96,8 (с, 2F, CF $_{2}$ S), -87,3 (уш.с, 2F, CF $_{2}$ O), -84,5 (м, 2F, CF $_{2}$ O), -82,7 (д, 3F, 3 J $_{FF}$ = 6 Гц, СF $_{3}$).

Ди-(5-фторсульфонилперфтор-3-оксаамил)дисульфид (7с).

Выход 70%, т.кип. $54 \div 55^{\circ}$ C/0,3 Торр. Найдено (%): C, 14,29; F, 51,51; S, 19,38. $C_8F_{18}O_6S_4$. Вычислено (%): C, 14,51; F, 51,63; S, 19,36. ЯМР 19 F δ : -114 (c, 4F, CF_2SO_2F), -96 (c, 4F, CF_2S), -85,8+83,6 (два c, 8F, CF_2OCF_2), 43,9 (c, 2F, SO_2F).

Ди-(7-метоксикарбонилперфтор-3,6-диокса-4,7-диметилгептил)дисульфид (7d).

Смесь стереоизомеров. Выход 70%, т.кип. $112 \div 122^{\circ}$ C/0,3 Topp. Haйдено (%): C, 22,75; H, 0,65; F, 56,35; S, 6,59. $C_{18}H_{6}F_{28}O_{8}S_{2}$. Вычислено (%): C, 22,85; H, 0,64; F, 56,21; S, 6,78. ЯМР 1 H δ : 3,97 (c, 3H, CH_{3}); ЯМР 19 F δ : -146,5 (дд, 2F, $CF_{2}OCFCF_{2}O$), -133,8 (дд, 2F, $OCFCO_{2}Me$), -98,5 (уш.с, 4F, $CF_{2}S$), $-90,6 \div -89,5 \div -84,3 \div -83,2$ (м, 4F, $OCFCF_{2}O$), -87,7 (c, 6F, CF_{3}), $-87,5 \div -86,5$ (м, 4F, $SCF_{2}CF_{2}O$), -85,2 (с, 6F, CF_{3}).

2-(Бромдифторметил)-2,4,4,5,5-пентафтор-1,3-оксатиолан (9).

Выход 70% (смесь энантиомеров), т.кип. 94÷95°С. Найдено (%): С, 15.50; Вг, 26.10; F, 42.91; S, 10.05. C_4 Вг F_7 ОS. Вычислено (%): С, 15.55; Вг, 25.86; F, 43.04; S, 10.38. ЯМР ¹⁹F δ : -93,4, -87,2 (АВ $_{KB}$, 2F, 2 J $_{FF}$ = 209 Гц, CF $_2$ S), -92,8, -83,3 (АВ $_{KB}$, 2F, 2 J $_{FF}$ = 131 Гц, CF $_2$ O), -86,6 (с, 1F, CF), -67,3 (с, 2F, CF $_2$ Br). Масс-спектр (М/Z, отнесение): 308[M] $^+$, 289[M-F] $^+$, 261[M-COF] $^+$, 229[M-Br] $^+$, 201[M-Br-C-O] $^+$, 179[M-CF $_2$ Br] $^+$ (100%), 129[CF $_2$ Br] $^+$, 119[C $_2$ F $_5$] $^+$, 113[C $_2$ F $_3$ S] $^+$, 100[C $_2$ F $_4$] $^+$, 82[CF $_2$ S] $^+$, 69[CF $_3$] $^+$, 63[CFS] $^+$, 47[COF] $^+$.

2-(Хлордифторметил)-2,4,4,5,5-пентафтор-1,3-оксатиолан (9').

Получен в смеси с бромидом **9** в соотношении **9/9'=**3/1 по реакции **8** с двумя эквивалентами PCI₃.

Масс-спектр (M/Z, отнесение): $245[M-F]^+$, $229[M-CI]^+$, $217[M-COF]^+$, $201[M-CI-C-O]^+$, $179[M-CF_2CI]^+(100\%)$, $163[C_2F_4SCF]^+$, $135[C_2F_4CI]^+$, $119[C_2F_5]^+$, $113[C_2F_3S]^+$, $100[C_2F_4]^+$, $85[CF_2CI]^+$, $82[CF_2S]^+$, $69[CF_3]^+$, $63[CFS]^+$, $47[COF]^+$.

Реакция трифторметансульфонилбромида 1 с PCI₃ (2 экв.) в присутствии олефинов (общая методика).

К смеси 27,5 г (0,2 моль) треххлористого фосфора и (0,1 моль) олефина добавляют 1 каплю диметилформамида и при перемешивании и температуре 5÷10°С прибавляют по каплям 21,3 г (0,1 моль) сульфонилбромида **1**. Смесь выдерживают при 20÷25°С в течение 3-20 час., контролируя реакцию методом ЯМР ¹⁹F.

Затем отгоняют в вакууме (10 торр) в охлаждаемую ловушку (-70°С) низкокипящие компоненты смеси и дальнейшей перегонкой кубового остатка в вакууме выделяют смесь продуктов галотрифторметилтиилирования олефина, которую анализируют методом ЯМР ¹⁹F и хроматомасс-спектрометрии.

Реакция в присутствии циклогексена.

В результате реакции с циклогексеном получена смесь продуктов (ЯМР ¹⁹F): 50% **10** (δ: -40,2); 20% **11** (δ: -40,4); 30% **12+12'**.

(β-Хлорциклогексил)трифторметилсульфид (10).

ЯМР 1 Н δ: 1,3-1,6 (м, 3H, cyclohexyl), 1,6-1,85 (м, 3H, cyclohexyl), 2,15 (м, 1H, cyclohexyl), 2,35 (м, 1H, cyclohexyl), 3,4 (м, 1H, CHSCF₃), 4,05 (м, 1H, CHCl); ЯМР 19 F δ: -40,2 (с, SCF₃). Масс-спектр (М/Z, отнесение): 218[M]⁺, 199[M-F]⁺, 183[M-Cl]⁺, 149[M-CF₃]⁺, 141[C₃H₄SCF₃]⁺, 128[C₂H₃SCF₃]⁺, 117[C₆H₁₀Cl]⁺, 81[C₆H₉]⁺(100%), 79[C₆H₇]⁺, 77[C₆H₅]⁺, 67[C₅H₇]⁺, 59[C₂H₃S]⁺, 53[C₄H₅]⁺, 45[CHS]⁺, 39[C₃H₃]⁺.

Аналогично, с использованием 2-х эквивалентов PBr_3 в ацетонитриле, получена смесь продуктов (ЯМР ¹⁹F): 84% **11** (δ : -40,4); 16% **12**'.

(β-Бромциклогексил)трифторметилсульфид (11).

Масс-спектр (M/Z, отнесение): $262[M]^+$, $183[M-Br]^+$, $161[C_6H_{10}Br]^+$, $141[C_3H_4SCF_3]^+$, $128[C_2H_3SCF_3]^+$, $81[C_6H_9]^+(100\%)$, $79[C_6H_7]^+$, $77[C_6H_5]^+$, $67[C_5H_7]^+$, $59[C_2H_3S]^+$, $53[C_4H_5]^+$, $45[CHS]^+$, $39[C_3H_3]^+$.

Реакция в присутствии аллилтрифторацетамида.

В этом случае реакция не требует катализа DMF. Получена смесь продуктов (ЯМР 19 F): 10% CF₃SSCF₃ (δ : -47); 60% M_{Cl} **13a** (δ : -40,93); 21,6% a-M_{Cl} **14a** (δ : -42,34); 6,5% M_{Br} **13b** (δ : -40,84); 1,9% a-M_{Br} **14b** (δ : -42,27).

N-(3-трифторметилтио-2-хлорпропил)трифторацетамид (13a).

Масс-спектр (M/Z, отнесение): $290[M+H]^+$, $270[M-F]^+$, $254[M-CI]^+$, $234[M-CI-HF]^+$, $188[M-CF_3S]^+$, $184[M-HCI-CF_3]^+$, $177[M-NHCOCF_3]^+$, $168[C_5H_5F_3NS]^+$, $152[C_5H_5F_3NO]^+(100\%)$, $128[C_3H_3F_3S]^+$, $126[C_3H_3F_3NO]^+$, $115[C_2H_2F_3S]^+$, $78[COCF_2]^+$, $69[CF_3]^+$, $59[COCF]^+$, $45[CHS]^+$, $39[C_3H_3]^+$.

N-(3-хлор-2-трифторметилтиопропил)трифторацетамид (14a).

Масс-спектр (M/Z, отнесение): $290[M+H]^+$, $270[M-F]^+$, $254[M-C]]^+$, $200[M-HF-CF_3]^+$, $188[M-CF_3S]^+$, $184[M-HCI-CF_3]^+$, $168[C_5H_5F_3NS]^+$, $152[C_5H_5F_3NO]^+(100\%)$, $141[M-HCI-NHCOCF_3]^+$, $126[C_3H_3F_3NO]^+$, $115[C_2H_2F_3S]^+$, $78[COCF_2]^+$, $69[CF_3]^+$, $45[CHS]^+$, $39[C_3H_3]^+$.

N-(3-трифторметилтио-2-бромпропил)трифторацетамид (13b).

Масс-спектр (М/Z, отнесение): $334[M+H]^+$, $314[M-F]^+$, $254[M-Br]^+$, $234[M-Br-HF]^+$, $221[M-NHCOCF_3]^+$, $184[M-HBr-CF_3]^+$, $168[C_5H_5F_3NS]^+(100\%)$, $152[C_5H_5F_3NO]^+$, $141[M-HBr-NHCOCF_3]^+$, $128[C_3H_3F_3S]^+$, $126[C_3H_3F_3NO]^+$, $115[C_2H_2F_3S]^+$, $78[COCF_2]^+$, $69[CF_3]^+$, $59[COCF]^+$, $45[CHS]^+$, $39[C_3H_3]^+$.

N-(3-бром-2-трифторметилтиопропил)трифторацетамид (14b).

Масс-спектр (M/Z, отнесение): $334[M+H]^+$, $314[M-F]^+$, $254[M-Br]^+$, $234[M-Br-HF]^+$, $221[M-NHCOCF_3]^+$, $184[M-HBr-CF_3]^+$, $168[C_5H_5F_3NS]^+$, $152[C_5H_5F_3NO]^+$ (100%), $141[M-HBr-NHCOCF_3]^+$,

 $128[C_3H_3F_3S]^+$, $126[C_3H_3F_3NO]^+$, $115[C_2H_2F_3S]^+$, $78[COCF_2]^+$, $69[CF_3]^+$, $59[COCF]^+$, $45[CHS]^+$, $39[C_3H_3]^+$.

Реакция в присутствии аллилацетата.

В результате реакции с аллилацетатом получена смесь продуктов (ЯМР 19 F): 28% CF $_3$ SSCF $_3$ (δ : -47); 42% M $_{Cl}$ (δ : -41,05); 11% a-M $_{Cl}$ (δ : -42,3); 12% M $_{Br}$ (δ : -40,98); 7% a-M $_{Br}$ (δ : -42,22).

Реакция CF₃SO₂Br с двумя эквивалентами PCI₃ в присутствии аллилбромида.

К смеси 27,4 г (0,2 моль) треххлористого фосфора и 6,05 г (0,05 моль) аллилбромида добавляют 1 каплю диметилформамида и при перемешивании и температуре $10 \div 15^{\circ}$ С прибавляют по каплям 21,3 г (0,1 моль) трифторметансульфонилбромида (1). Смесь выдерживают при $20 \div 25^{\circ}$ С в течение 3 часов и перегонкой на колонке Вигре выделяют 8 г (80%) CF_3SSCF_3 (3).

Реакция CF₃SO₂Na с двумя эквивалентами PBr₃ в ацетонитриле.

К суспензии 10 г (64 ммоль) трифторметансульфината натрия (15) в 10 мл ацетонитрила добавляют по каплям при перемешивании и температуре $5\div10^{\circ}$ С 34,65 г (0,128 моль) трехбромистого фосфора. Смесь перемешивают при $20\div25^{\circ}$ С в течение 3 часов и оставляют на ночь, далее нагревают до кипения, отгоняя продукты с температурой кипения до 80° С, используя для их конденсации холодильник со смесью лед-вода. Полученный дистиллят промывают ледяной 5% соляной кислотой и перегонкой над P_2O_5 получают 5,2 г (80%) CF_3SSCF_3 (3).

Литература

- 1. Michaelis, Bull. Soc. Chim., 1871, 15, 185.
- 2. H.B. North, J.C. Thomson, JACS, 1918, 40, 774-777.
- 3. E. Krumbiegel, Pat. DE415312C (1925).
- 4. Handbook of Preparative Inorganic Chemistry V.1, 2nd Ed., G. Brauer, Acad. Press Inc., N.Y., London, Trans. from the Germ., **1963**, p. 387.
- 5. R. Otto, A. Rossing, Ber., 1891, 24, 3874-3883.
- 6. A.H. Kohlhase, JACS, 1932, 54, 2441-2448.
- 7. W.H. Hunter, B.E. Sorenson, JACS, 1932, 54, 3364-3367.
- 8. W.H. Hunter, B.E. Sorenson, JACS, 1932, 54, 3368-3374.
- 9. A.H. Kohlhase, JACS, 1933, 55, 1291-1292.
- 10. L.I. Zakharkin, G.G. Zhigareva, Zh.Org.Khim., 1973, 9, 891-895.
- 11. A.A. Tyutyunov, L.F. Ibragimova, N.D. Kagramanov, S.R. Sterlin, S.M. Igumnov, XI All-Russian Conference "FLUORINE CHEMISTRY" (devoted to the 110th anniversary of academician I.L. Knunyants), June 26-30, **2016**, Moscow Russia, O-43.
- 12. C.T. Ratcliffe, J.M. Shreeve, *JACS*, **1968**, 90, 5403-5408.
- 13. Comprehensive Handbook of Chemical Bond Energies, Yu-Ran Luo, CRC Press, Taylor & Francis Group, Boca Raton, London, New York, **2007**.
- 14. T. Mahmood, J.M. Shreeve, *Inorg. Chem.*, **1985**, 24, 1395-1398.
- 15. P.R. Resnick, US Pat. №3,560,568 (1971).
- 16. A.A. Tyutyunov, L.F. Ibragimova, N.D. Kagramanov, N.I. Delyagina, V.F. Cherstkov, S.R. Sterlin, S.M. Igumnov, *Fluorine notes*, **2015**, 5(102).

- 17. S.D. Chepik, V.F. Cherstkov, S.R. Sterlin, L.S. German, *Bull.Acad.Sci. USSR*, *div.chem.sci.*, **1990**, 39, 1992-1992.
- 18. S.D. Chepik, V.F. Cherstkov, E.I. Mysov, A.F. Aerov, M.V. Galakhov, S.R. Sterlin, L.S. German, *Bull.Acad.Sci. USSR, div.chem.sci.*, **1991**, 40, 2285-2291.
- 19. A. Haas, M. Lieb, Y. Zhang, *JFC*, **1985**, 30, 203-210.
- 20. H.W. Roesky, S. Tutkunkardes, Chem.Ber., 1974, 107, 508-517.
- 21. X. Zhao, A. Wei, B. Yang, T. Li, Q. Li, D. Qiu, K. Lu, JOC, 2017, 82, 9175-9181.
- 22. D.-W. Sun, X. Jiang, M. Jiang, Y. Lin, J.-T. Liu, Eur. JOC, 2017, 24, 3505-3511.
- 23. W.-Y. Huang, L. Lu, Chin.J.Chem., 1992, 10, 268-273.
- 24. A.A. Tyutyunov, L.F. Ibragimova, N.D. Kagramanov, S.R. Sterlin, S.M. Igumnov, *Fluorine notes*, **2016**, 6(109).

Статья рекомендована к публикации членом редколлегии д.х.н. С.Р. Стерлиным