Поступило в редакцию: Ноябрь 2017

УДК 542.91:541.49+541.64:66.095.264.3-036.742

Биядерные комплексы хлорида титана(IV) с хиральными фторсодержащими тетраарил-1,3-диоксолан-4,5-диметанольными лигандами – новый тип катализаторов полимеризации этилена и пропилена

С. Ч. Гагиева ^{а)}, В.А.Тускаев^{а, в)}, Л.А. Ришина^{б)}, А.Г. Буяновская^{в)}, Б. М. Булычев^{а)}

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, 19992, Москва, Ленинские горы, Российская Федерация, Факс: 932 8846. E-mail: B.Bulychev@highp.chem.msu.ru

^б Институт химической физики им. Н.Н. Семенова РАН, 11797, Москва, ул. Косыгина, 4, Россия

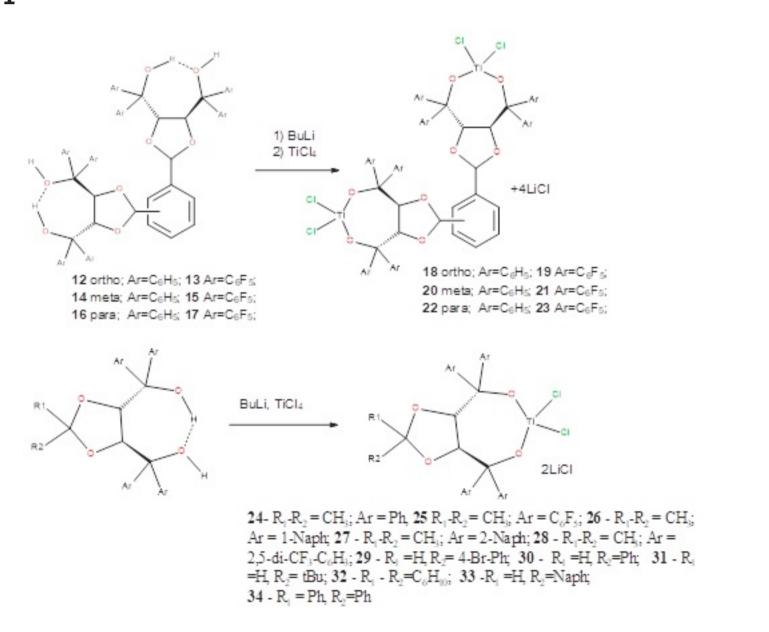
^В Институт элементоорганических соединений им. А.Н. Несмеянова, 119992, Российская федерация, Москва, ул. Вавилова 28

Аннотация: Получены моно- и биядерные координационные соединения титана (IV), стабилизированные новыми би- и тетрадентантными хиральными лигандами (L) - производными (4R,5R)-2,2-диметил-,,','-тетрафенил-1,3-диоксолан-4,5-диметанола. Комплексы, после активации метилалюмоксаном, катализируют реакцию полимеризации этилена с активностями от 50 до 1000 кг ПЭ(моль Ті ч атм)-1 и пропилена от 50 до 200 кг ПП(моль Ті ч атм)-1). Замена фенильных радикалов в лигандах на перфторфенильные приводит к значительному увеличению каталитической активности систем в реакциях полимеризации этилена и пропилена. Показано, что системы с участием биядерных комплексов и системы с комплексами, содержащими в лигандах перфторфенильные фрагменты, продуцируют образование полиэтиленов со значительно большими значениями молекулярных масс, в сравнении с моноядерными и нефторированными аналогами.

Ключевые слова: титан(IV), ТАДДОЛ, фторсодержащие лиганды, гомогенный катализ, полимеризация, СВМПЭ, полипропилен.

В последние два десятилетия отмечается интенсивный рост исследований в области синтеза координационных соединений переходных металлов 4-6 и 8-10 групп, многие из которых оказались эффективными компонентами каталитических

систем полимеризации олефинов, получивших название постметалоценовые системы [1-6]. Эти катализаторы характеризуются высокой активностью и возможностью получения с их помощью различных типов полиолефинов: сверхвысокомолекулярного линейного полиэтилена (СВМПЭ), низкомолекулярного ПЭ с концевыми винильными высокорегулярного изотактического И синдиотактического высокомолекулярного атактического полипропилена, сверхвысокомолекулярных статистических и блок-сополимеров этилена с пропиленом, сополимеров этилена с норборненом и ряда других полиолефинов [7-9]. Одним из наиболее интересных свойств некоторых катализаторов этого класса является способность обеспечивать "живую" полимеризацию этилена и пропилена даже при высоких температурах реакции, что позволяет получать ПЭ и ПП с очень узким молекулярно-массовым распределением $(M_w/M_n \sim 1)$.


В то же время систематические исследования комплексов с хиральными лигандами, содержащими перфторированные заместители, в полимеризации олефинов крайне редки. Данные системы интересны с двух точек зрения: 1 - выяснения влияния электроакцепторных функциональных групп на каталитические свойства получаемых комплексных соединений и отсюда на все свойства полимеров, включая МW, молекулярно-массовое распределение, кристалличность и т.п., 2- возможностью синтеза моно-, би- и полиядерных комплексов и исследования эффекта нуклеарности пре-катализатора на активность системы и свойства полимера.

Би- и полиядерные комплексы переходных металлов являются эффективными катализаторами разнообразных химических реакций, включая и полимеризацию олефинов [10]. В структурах подобных соединений возможно (хотя и не всегда регистрируется и не всегда доказывается их полиядерная природа) кооперативное взаимодействие близко расположенных металлических центров, обеспечивающее уровень активности и селективности каталитических систем, недостижимый для систем с моноядерными аналогами. Помимо этого, кооперативный эффект в катализе полимеризации олефинов может влиять на степень разветвлений полимерной цепи и кинетические параметры переноса цепи, что, в конечном итоге, сказывается на молекулярном весе полимера и его морфологии [11].

Ранее нами было показано, что комплексные соединения титана с диольными лигандами являются эффективными компонентами постметаллоценовых каталитических систем полимеризации этилена [12-15]. В настоящей работе описан синтез и свойства новых типов хиральных полидентатных лигандов - производных тетраарил-1,3-диоксолан-4,5-диметанола (ТАДДОЛа)- и ряда комплексов титана(IV), полученных с их участием, а также результаты изучения каталитических свойств этих комплексов в гомогенных реакциях полимеризации этилена и пропилена.

Хиральные лиганды (**1-17**) получены путем взаимодействия арилмагнийбромидов с соответствующими ацеталями эфиров винной кислоты [16,17] (Схема 1). Введение в структуру лиганда стерически затрудненных ароматических заместителей, функционализированных различными группами, позволяет изменять как геометрию молекулы комплекса, т.е. направленно регулировать стерическую нагруженность металлического центра, так и его электронные характеристики. В этом отношении достаточно удобными заместителями являются атомы фтора и трифторметильные группы.

Схема 1

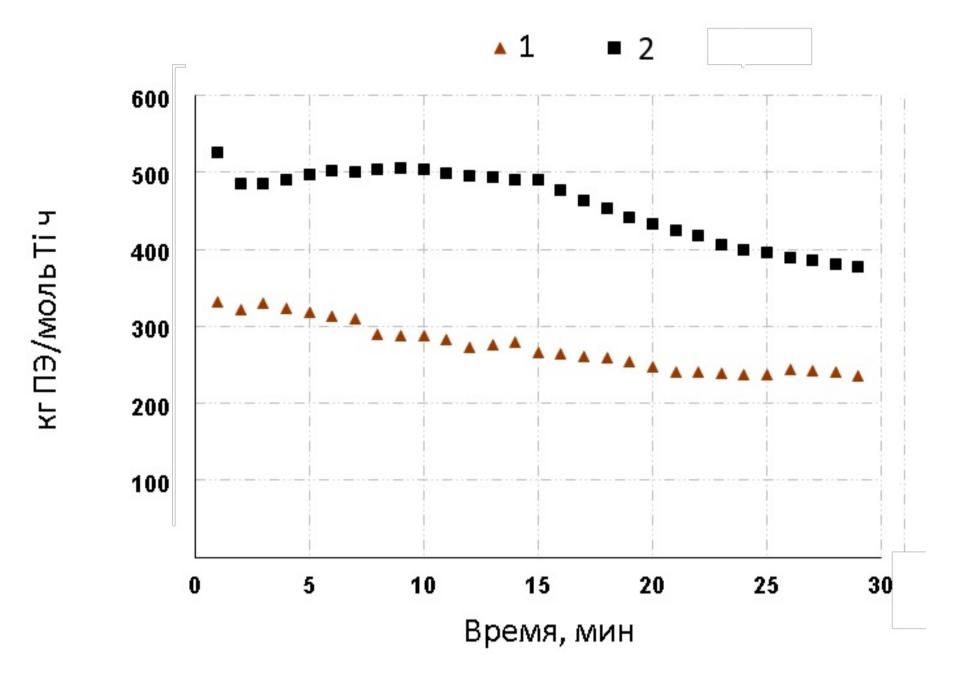
Схема 2.

Состав соединений и их строение подтверждены данными элементного анализа, спектрами ЯМР и масс-спектроскопии. В ИК-спектрах комплексов наблюдалось появление полос валентных колебаний Ti–O, Ti–Cl в области 520-600 см $^{-1}$.

Для изучения каталитических свойств комплексы состава $LTiCl_2$ или LTi_2Cl_4 не отделяли от побочного продукта реакции – LiCl, а сразу активировали их полиметилалюмоксаном (MAO) и использовали в реакции полимеризации этилена in situ. Наиболее значимые результаты этого исследования приведены в таблице 1.

Таблица 1.Полимеризация этилена на системах с пре-катализаторами **18-23 и 24-34/МАО** и некоторые свойства получаемого полиэтилена ^а

Nō Nō	Комплекс	[Al]/ [Ti]	Масса полимера, г	A ⁶	Степень крист ^в %	Т _{пл} г	M _w , 10 ⁶	M _w / M _n
1	18	1000	0.29	192	47	138	1.50	2.7
2	18	500	0.20	132	48	139	1.98	3.5
3	18	3000	0.50	501	52	137	1.50	2.7
4	19	500	0.35	240	58	142	3.7 ^ж	
5	19	1000	0.70	463	69	143	5.64 ^ж	
6	20	3000	0.12	212	52	138	1.45	
7	20	1000	0.37	232	50	137		
8	21	3000	0.36	230	73	140	4.68 ж	
9	21	1000	0.79	510	70	142		
10	22	1000	0.85	550	52	139		
11	22	500	0.57	368	60	137		
12	23	1000	1.50	968	77	143	4.25 ^ж	
13	23	500	1.05	678	72	140	5.04 ^ж	
14	24 ^e	3000	0.62	805	73	140	0.50	2.12
15	24	1050	0.41	480	68	141	0.48	2.32
16	24	200	0.12	21	54	142		


17	25	1000	0.30	600	76	144	1.45	2.76
18	25	500	0.24	480	79	143	1.68	2.67
19	25 ^e	1000	0.49	850	71	141		
20	26	500	0.05	48	58	142		
21	27	500	0.05	69	60	143	1.21	2.78
22	28	500	0.10	120	62	139		
23	29	500	0.12	150	68	138	1.05	3.93
24	30	500	0.29	520	50	140		
25	31	500	0.10	120	56	141		
26	32	500	0.18	120	47	139		
27	33	500	0.32	150	49	137	_	
28	34	500	0.40	520	66	139		

^а Полимеризация выполнена в 10 мл толуола, C(Ti) 1.7 10^{-6} моль, давление 1 атм, время полимеризации 30 мин, температура полимеризации 25 С, катализатор готовили в режиме *in situ*. ⁶ кг ПЭ (моль Тi атм)⁻¹ ч⁻¹. ^в Температура плавления определена из ДСК (второе плавление образца полиэтилена). ^г Степень кристалличности рассчитана по данным ДСК (с использованием формулы $H_m100\% = 288 \text{ J/g}$) [18]. ^д M_w определен ГПХ; ^е реакция проведена в гептане; ^ж M_w определен визкозиметрически.

Как видно из таблицы 1, все прекатализаторы **18-34** в той или иной степени эффективны в реакции полимеризации этилена: каталитическая активность систем варьирует в диапазоне от 21 до 968 кг ПЭ/(моль Ті ч атм).

Наиболее эффективными являются каталитические системы на основе фторсодержащого биядерного комплекса **23** (каталитическая активность достигает 968 кг ПЭ (моль Ті атм)⁻¹ ч⁻¹). Увеличение мольного отношения Al_{MAO} /Ті от 500 до 3000 моль/моль (на примере прекатализатора **18**) сопровождается постепенным ростом активности каталитической системы от 132 до 500 кг ПЭ/моль Ті·ч·атм.

Полимеризация этилена на фторсодержащих биядерных ТАДДОЛьных комплексах **19, 21** и **23,** в отличие от фенильных аналогов, приводит к заметному повышению каталитической активности (в 2-3 раза). Как видно из рисунка 2, полимеризация этилена на моно- и биядерных фторсодержащих комплексах характеризуется относительно стабильной кинетикой.

Рисунок 2. Кинетика полимеризации этилена на прекатализаторах **23** (кривая 2, опыт12, таблица 1) и **25** (кривая 1, опыт 17, таблица 1).

комплексов В 24-34 наиболее эффективным моноядерных является прекатализатор 25. Как видно из таблицы 1, замена перфторфенильных фрагментов на объемные 1-нафтильный, 2-нафтильный и 2,5-ди-СГ₃-фенильный не приводит к увеличению каталитической активности системы. Изменение природы радикала в диоксолановом фрагменте на трет-бутильный, нафтильный, 4-бромфенильный также не приводит к увеличению каталитической активности 29, 31, 33. Введение одного или двух фенильных радикалов в диоксолановый цикл (комплексы 30, 34) сопровождается ростом активности до 520 кг ПЭ/ (моль Ті ч атм) и только при наличии двух метильных радикалов в диоксолановом цикле (комплексы 24, 25) каталитическая активность возрастает до 850 кг ПЭ/(моль Ті ч атм).

ИК-спектры полиэтиленов, образующихся на всех катализаторах с ТАДДОЛ'ьными лигандами характеризуются наличием полос при 908 и 995 см $^{-1}$, которые можно отнести к концевым винильным группам. Это свидетельствует о передаче цепи путем -Н элиминирования и переходе водорода на атом Ті или мономер [19]. О том, что преимущественно строение полимеры имеют линейное являются сверхвысокомолекулярными полиэтиленами, свидетельствуют ИKданные спектроскопии, ТГА, ДСК и вискозиметрии (молекулярная масса до 5 10^6 Да).

Сравнительно высокая стабильность моноядерного фторсодержащего комплекса **25** и биядерных комплексов **19, 21** и **23** в условиях полимеризации, в особенности термостабильность **25** при температурах до 50 °C, позволила провести полимеризацию пропилена и блок-сополимеризацию пропилена с этиленом.

На моноядерном перфторфенильном **25** титановом катализаторе образуется полипропилен, обладающий эластичными свойствами, с изотактическими включениями ($T_{\Pi \Pi} = 150-156^{\circ}$ C, $T_{C} = 4-5^{\circ}$ C и степень кристалличности 9%) [15].

На биядерных катализаторах **19, 23** выход полипропилена не увеличивается по сравнению с моноядерным аналогом (таблица 2), но в ЯМР спектре наблюдается увеличение доли изотактических последовательностей (mmmm) 31.32, 27.75 (соответственно).

Таблица 2. Полимеризация пропилена на каталитических системах **22,23,25**/МАО (t = 50C, жидкий пропилен, продолжительность полимеризации 60 мин).

Nº	Прекатализатор	Ті 10 ⁵ , моль	Al/Ti моль/ моль		ыход олимера кг/моль Ті
1	22	1.5	135	1	67
2	23	1.07	189	1	100
3	25	5.37	120	5	93.1

Таблица 3

Структурные характеристики ПП, полученного на системах с моно- и биядерными комплексами **22, 23 и 25**

N ō N ō	Прекатализатор	D ₉₉₈ /D ₉₇₃	D ₈₄₀ /D ₉₇₃	D ₈₆₅ /D ₁₁₆₀	T _{пл} , С	Н _{пл} , Дж/г	T, C
1	22	0.445	0.30	0.0555	151.8	10.08	1:
2	23	0.45	0.26	0.045	154.9/149.7	23.94/ 9.277	1(
3	25 моно F	0.47	0.27	0.0455	156.1/152.8	19.63/ 15.15	1:

 $T_{\Pi \Pi}$ –первое и второе плавление

Таблица 4. Распределение стерических пентад в образцах ПП, полученного с монои биядерными комплексами **22, 23** и **25** (жидкий пропилен)

Содерж	ание сте	рически	их пента	ад, %		

Nº	Прекатализатор	mmmm	mmmr	rmmr	mmrr	mrmm+ rmrr	rmrm	rrrr	rrrr
1	22	31.32	9.93	1.91	8.57	12.48	5.37	11.07	11.
2	23	27.75	8.94	2.52	9.42	13.58	6.40	8.58	16.
3	25	27.2	9.15	2.65	9.29	14.99	5.99	13.11	10.

Таким образом, все полученные нами моно- и биядерные титансодержащие комплексы с производными тетраарилдиоксоландиметанола, после их активации полиметилалюмоксаном способны катализировать реакции полимеризации этилена и пропилена. Введение в структуру лиганда перфторфенильных фрагментов приводит к существенному увеличению каталитической активности систем, как при полимеризации этилена, так и пропилена. Этот факт не может быть объяснен исключительно стерическими факторами. Очевидно, что большое значение играют электронные эффекты, а также так называемый «фторный эффект», заключающийся в формировании слабых нековалентных взаимодействий между атомами фтора в лиганде и водородными атомами растущей полимерной цепи [9].

Активность биядерных комплексов в полимеризации этилена, вне зависимости от структуры линкера (о-, м- и п-ксилиденового фрагмента), либо не превосходит, либо существенно уступает моноядерным аналогам. Однако, полиэтилен, полученный на биядерных пре-катализаторах, характеризуется значительно более высокими значениями молекулярной массы (до $5.64\ 10^6$ Да для комплекса 12), что, с нашей точки зрения, позволяет предположить наличие кооперативного эффекта двух металлических центров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтезы комплексов проводили в атмосфере аргона. Тетрагидрофуран, дихлорметан, толуол, изопропанол, гексан марок "х.ч." дополнительно перегоняли над кетил натрием [20] $TiCl_4$ фирмы Fluka дополнительно перегоняли в атмосфере аргона. Метилалюмоксан (ММАО-12; Aldrich) использовали в виде 7% раствора в толуоле. Диизопропиловый эфир L-винной кислоты получали по описанной ранее методике [16]. 1,2-, 1,3- и 1,4-ди-[(4R,5R)-4,5-бис-(карбоксиэтил)-1,3-диоксолан-2-ил]-бензолов получены по методике [21].

Спектры ЯМР лигандов записывали на приборе "Bruker AMX-400", ИК спектры - на спектрофотометре "Magna-IR 750". Оптическое вращение измеряли на поляриметре "Perkin-Elmer 241". Элементный анализ проводился на приборах "Carlo Erba-1106" и "Carlo Erba-1108".

Соединения **1-11** были получены реакцией Гриньяра по общей методике, приведенной в [22].

Для [(4R,5R)-2,2-диметил- α , α , α ', α '-тетрафенил-1,3-диоксалан-4,5-диметанола] (1) Т. пл. 193 0 С. Выход 86%. Найдено (%): С, 79.74; Н, 6.40. С $_{31}$ Н $_{30}$ О $_{4}$. Вычислено (%): С, 79.80; Н, 6.48. 1 Н ЯМР (400 МГц, CDCl $_{3}$) δ : 1.56 (c, 6H, CH $_{3}$), 3.85 (c, 2H, OH), 4.67 (c, 2H, CH), 7.22-7.34 (м, 10H, Ph).

Для [(4R,5R)-2,2-диметил- α , α , α ', α '-тетрафтортетрафенил-1,3-диоксалан-4,5-диметанола] (2) Т. пл. 106 0 С. Выход 76%. Найдено (%): С, 45.00; Н, 1.18. $C_{31}H_{10}F_{20}O_{4}$. Вычислено (%): С, 45.06; Н, 1.22. 1 Н ЯМР (400 МГц, CDCl₃) δ : 1.37 (с, 6H, CH₃), 4.67 (с, 2H, OH), 4.89 (с, 2H, CH).

Для [(4R,5R)-2-циклогексил- α , α , α ', α '-тетра-1-нафтил-1,3-диоксалан-4,5-диметанола] (3) осуществляли согласно методике приведенной в работе [22]. Т. пл. 186 0 С.

Синтез [(4R,5R)-2,2-диметил- α , α , α ', α '-тетра-2-нафтил-1,3-диоксалан-4,5-диметанола] (4) осуществляли согласно методике приведенной в работе [22]. Т. пл. 193 0 С.

Синтез [(4R,5R)-2,2-диметил- α , α , α ', α '-тетра(2,5-дитрифторметилфенил)-1,3-диоксалан-4,5-диметанола] (5) осуществляли согласно методике приведенной в [21]. Т. пл. 106 0 С.

Синтез [(4R,5R)-2-ди-4-бромфенил- α , α , α ', α '-тетрафенил-1,3-диоксалан-4,5-диметанола] (6) осуществляли согласно методике приведенной в работе [21]. Т. пл. 193 0 С.

Синтез [(4R,5R)-2,2-диметил- α , α , α ', α '-тетрафтортетрафенил-1,3-диметанола] (2) осуществляли согласно методике приведенной в [17]. Т. пл. 106 0 С.

Синтез 1,2-бис(4,5-бис(дифенил)гидроксиметил-1,3-диоксолан-2-ил)-бензола (12). В атмосфере аргона к реактиву Гриньяра, полученному из металлического магния $(0.94\ r)$ и C_6H_5Br $(6.0\ r; 10\ ммоль)$ в 20 мл тетрагидрофурана, охлажденному до 0°C, был добавлен раствор 1,2-ди-[(4R,5R)-4,5-бис-(карбоксиэтил)-1,3-диоксолан-2-ил]бензола (2 г; 3.9 ммоль). После окончания прибавления реакционную смесь нагревали до кипения и кипятили с обратным холодильником в течение 2 часов. Затем реакционную смесь разлагали 50 мл насыщенного раствора NH₄Cl, отделяли органический слой, сушили над Na_2SO_4 , и удаляли растворитель в вакууме. Полученное масло перекристаллизовывали из толуола. Получено 0.50 г. (90%). Т. пл. 118° C; $[\alpha]_D^{25} + 100^0$ (с 1, CHCl $_3$). Спектр 1 H ЯМР (CDCl $_3$, δ , м.д.) 7.54-7.11 (м, 44H, аром.), 6.18 (с, 2H, CH), 5.34 (д, 2H, CH, J=4.0 Гц), 5.28 (д, 2H, CH, J=4.0 Гц), 3.25 (с, 2H, OH), 1,90 (с, 2H,OH). УФ-спектр (CH $_2$ Cl $_2$), λ_{max} , нм (lg ϵ): 245.2 (4.35), 253.6 (4.46), 259.4 (4.51). Найдено: C 80.67%; H 5.65%. Вычислено для $C_{64}H_{54}O_8$: C 80.82%; H 5.72%.

Синтез 13-17 проводили аналогично 12.

Синтез комплексов 18-34 проводили по общей методике:

К раствору лиганда 1-17 (0.20 ммоль) в толуоле при температуре -78°C добавляли 2,5 М раствор бутиллития в гептане (0.42 ммоль) по каплям. Температуру реакционной смеси доводили до комнатной, и через 4 часа вновь охлаждали до 0°C и добавляли раствор $TiCl_4$ (0.20 ммоль) в 5 мл толуола. Через 3 часа перемешивания растворитель упаривали. Аналитические образцы комплексов получены кристаллизацией из смеси толуол: гексан 1:1.

Работа выполнена при финансовой поддержке Российского Научного Фонда (грант РНФ №16-13-10502).

Список цитированной литературы:

- 1. B.M. Trost, L.C. Czabaniuk. *Angew. Chem. Int. Ed.*, **2014**, *53*, 2826 2851.
- 2. M. C. Baier, M.A. Zuideveld, S. Mecking. *Angew. Chem. Int. Ed.,* **2014**, *53*, 9722 9744.
- 3. S. Wang, W.-H. Sun, C. Redshaw. J. Organomet. Chem., 2014, 751, 717-741.
- 4. M.S. Khan, A. Haque, M. K. Al-Suti, P. R. Raithby. *J. Organomet. Chem.*, **2015**, *793*, 114-133, DOI 10.1016/j.jorganchem.2015.03.023.
- 5. L.C. So, S. Faucher, S. Zhu. *Progress in Polymer Science*, **2014**, *39*, 1196–1234.
- 6. Y.-Y. Grace Luk, D.A. Foucher, R.A. Gossage. C. R. Chimie, 2013, 16, 573-579.
- 7. Y.V. Kissin. J. Res. Updates Polym. Sci., 2013, 2, 8-24.
- 8. Y.V. Kissin. Alkene Polymerization Reactions with Transition Metal Catalysts. Amsterdam: Elsevier **2008** [chapter 5].
- 9. H. Makio, T. Fujita, Bull. Chem. Soc. Jpn. 2005, 78, 52-66.
- 10. M. Delferro, T. J. Marks, Chem Rev., **2011**, 111, 2450-2485.
- 11. Ainooson M., Meyer F., in Comprehensive Inorganic Chemistry II (Second Edition), Volume 8: Coordination and Organometallic Chemistry, 2013, 433–458.
- 12. M.V. Solov'ev, S.Ch. Gagieva, V.A. Tuskaev, N.M. Bravaya, O.E. Gadalova, V.N. Khrustalev, A.O. Borissova, B.M. Bulychev, *Russ. Chem. Bull.*, **2011**, *60*, 2227-2235.
- 13. L.A. Rishina, S.S. Lalayan, S.Ch. Gagieva, V.A. Tuskaev, A.N. Shchegolikhin, D.P. Shashkin, Y.V. Kissin, *J. Res. Updates. Polym. Sci.*, **2015**, *3*, 216-226.
- 14. Y.V. Kissin, L.A. Rishina, N.M. Galashina, S.Ch Gagieva, V.A. Tuskaev, Eur. Polym. J., **2009**, *45*, 2951-2961.
- 15. L.A. Rishina, N.M. Galashina, S.Ch. Gagieva, V.A. Tuskaev, B.M. Bulychev, Yu N. Belokon, *Polymer Science Series A*, **2008**, *50*, 110-118.
- 16. Y. N. Belokon', S. C. Gagieva, T. A. Sukhova, Russ. Chem. Bull., 2005, 54, 2348-2353.
- 17. V.A. Tuskaev, S.C. Gagieva, V.I. Maleev, M.V. Solov'ev, A.O. Borissova, Z.A. Starikova, B.M. Bulychev, *Polymer*, **2013**, *54*, 4455-4462.
- 18. B. Wunderlich, C.M. Cormier, *J. Polym. Sci Part A 2 Polym. Phys.*, **1967**, *5*, 987-988.
- 19. L.K. Johnson, C.M. Killian, M.S. Brookhart, J. Am. Chem. Soc., **1995**, *117*, 6414.
- 20. Organikum. Organischchemisches Grundpraktikum, VEB Deutscher Verlag der Wissenschaften, Berlin, 1990.
- 21. D. Seebach, A. K. Beck, R. Imwinkelried, S. Roggo, A. Wonnacott, *Helv. Chim. Acta*, **1987**, *70*, 954.
- 22. A. K. Beck, B. Bastani, D. A. Plattner, W. Petter, D. Seebach, H. Braunshweiger, P. Gysi, and L. LaVeccia, *Chimia*, **1991**, *45*, 238;
- 23. D. Seebach, A. K. Beck, R. Imwinkelried, S. Roggo, and A. Wonnacott, Helv. Chim. Acta, 1987, 70, 954.

Статью рекомендовал к публикации член редколлегии С. М. Игумнов