Поступило в редакцию: март 2015

Структурные свойства, Расчеты по теории функционала плотности (DFT), Обитали естественной связи (NBO) и энергии фторуглеродных соединений.

Shahriar Ghammamy, Farzane Yousefi

Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran e-mail: shghamamiii@yahoo.com или farzaneyousefi@yahoo.com

Аннотация: Были теоретически изучены структурные и электронные свойства нового вещества со структурой $C_{20}H_{11}F_{13}CIN_3O_3S$ с помощью метода теории функционала плотности (1). Расчеты B3LYP/3-21G определили некоторое длинны выбранных связей и значение углов связей для $C_{20}H_{11}F_{13}CIN_3O_3S$. В этой работе, с помощью метода теории функционала плотности с использованием стандартных базисных состояний 3-21G рассчитаны оптимизированные геометрии, частоты точек стационарности и траектории минимальной энергии двух новых веществ с формулой $C_{20}H_{11}F_{13}CIN_3O_3S$. Детальная точечная группа соединения C_1

Ключевые слова: Электронная структура, Фторуглеродные соединения, расчеты по методу теории функционала плотности, колебательный анализ, уровень B3LYP.

1. Введение

Сульфамидные препараты до сих пор вместе с первыми лекарственными препаратами (ампициллином и гентамицином) используются как химиопрепараты для лечения бактериальных инфекций человека, Escherichia (2) вызванных coli. Сульфонамиды ЭТО противомикробные препараты широко применяющиеся В животноводстве, и их остатки в пище могут представлять большой риск для здоровья людей. В молочной промышленности, ежедневно большое количество сульфонамидов. Фторалканы молока проверяется присутствие ΜΟΓΥΤ на использоваться как маслоотталкивающие, водооталктвающие вещества, фторполимеры, растворители, препараты для жидкостной вентиляции легких и сильные парниковые газы. Фторуглеродные жидкости бесцветны. Благодаря высокому молекулярному весу, они имеют высокую молекулярную плотность, почти вдвое выше воды. В последнее время отрицательное воздействие перфторированных веществ на окружающую среду вызывает особое беспокойство общественности, так как эти вещества широко распространены, устойчивы и их длиноцепные гомологи способны к накоплению в живых тканях. Во время нашей работы, мы описали расчеты оптимизированных геометрий, распределения и электронных структур для этого

соединения. Структура соединения была оптимизирована с помощью метода теории функционала плотности (B3LYP) с использованием стандартных базисных состояний 3-21G по программе Gaussian 09. Метод теории функциональной плотности был использован для определения оптимальной структуры C₂₀H₁₁F₁₃ClN₃O₃S. Первоначальные расчеты были проведены на уровне Метода теории функциональной плотности с валентно-расщепленными поляризационными базисами 3-21G.

2. Экспериментальная часть

2.1 Вещества и реагенты

Оптимизированные структурные параметры были использованы при вычислении колебательной чистоты на уровне DFT для характеристики минимальных значений стационарных точек. Все вычисления выполнены с помощью программы Gaussian 09. Гармоничные вибрационные частоты (v) в см⁻¹ и интенсивности инфракрасного излучения (int) в километрах на моль всех веществ были изучены на одном уровне на соответствующих полностью оптимизированных геометрий. Энергетический минимум молекулярных геометрий был обнаружен по методу минимизации энергии, в соответствии со всеми геометрическими координатами без налагания симметрических ограничений.

2.2 Изучение орбиталей естественных связей (NBO) структур

Рассчитанные гибридизации NBO являются важными параметрами нашего исследования. Структура соединения была оптимизирована с помощью метода теории функционала плотности (B3LYP) с использованием стандартных базисных состояний 3-21G по программе Gaussian 09. Методы теории функционала плотности были применены для оптимизации структур C₂₀H₁₁F₁₃ClN₃O₃S.

Рисунок 1. Оптимизированные геометрии $C_{20}H_{11}F_{13}CIN_3O_3S$ на уровне теории ВЗLYP/3-21

	Длина связи		Длина связи		Длина св
C ₇ -Cl ₁₂	1.7959	H ₃₁ -F ₅₂	0.9053	C ₄₃ -F ₄₄	1.35
N ₁₃ -N ₁₄	1.4114	H ₃₃ -F ₃₉	1.3936	C ₄₃ -F ₄₅	1.35
N ₁₅ -S ₁₇	1.7765	C ₃₄ -F ₃₅	1.35	C ₄₆ -F ₄₇	1.35
S ₁₇ -O ₁₈	105992	C ₃₇ -F ₃₉	1.35	C ₄₆ -F ₄₈	1.35
S ₁₇ -O ₁₉	1.5874	C ₄₀ -F ₄₂	1.35	C ₄₉ -F ₅₀	1.35
O ₂₉ -C ₃₀	1.4639	F ₄₁ -F ₅₂	1.717	C ₄₉ -F ₅₁	1.35
C ₃₀ -F ₅₂	1.4049	F ₄₁ -F ₅₀	1.4323	F ₄₁ -C ₄₉	1.7674
	Угол		Угол		Угол
N ₁₅ -S ₁₇ - O ₁₉	102.3412	F ₃₅ -C ₃₄₋ F ₃₆	109.4712	H ₃₂₋ C ₄₆ - F ₄₈	150.758
C ₂ -C ₇ -Cl ₁₂	124.3832	F ₃₈ -C ₃₇ -F ₃₉	109.4712	F ₄₇ -C ₄₆ - F ₄₈	109.471
O ₂₉ -C ₃₀ - F ₅₂	111.7984	F ₄₁ -C ₄₀ -F ₄₂	109.4712	F ₄₁ -C ₄₉ - F ₅₁	151.190
Cl ₁₂ -C ₇ -N ₁₃	121.5988	C ₄₀ -F ₄₁ -F ₅₀	108.903	F ₅₀ -C ₄₉ - F ₅₂	109.471

Таблица 1. Геометрические параметры оптимизированные для $C_{20}H_{11}F_{13}CIN_3O_3S$ некоторых выбранных длин связей (Å) и углов (\circ).

C ₇ -N ₁₃₋ N ₁₄	103.8277	C ₄₀ -F ₄₁ -F ₅₂	124.9545	F ₅₁ -C ₄₉ - F ₅₂	109.471
C ₃₀ -H ₃₂ - F ₄₇	134.5953	F ₅₀ -F ₄₁ -F ₅₂	88.3745	C ₃₀ -F ₅₂ - F ₄₁	73.4312
N ₁₅ -S ₁₇ - O ₁₈	114.0423	F ₄₄ -C ₄₃ -F ₄₅	109.4712	H ₃₁ -F ₅₂ - F ₄₁	51.3647

Орбитали естественных связей (NBO) это локализованные орбитали с несколькими центрами, которые описывают, молекулярную связующую модель пар электронов по Льюису в оптимально компактной форме. Точнее, NBO это ортонормальное множество "локализованных " максимальной занятости" орбиталей, чьи ведущие члены N/2 (N члены в незамкнутой оболочке) дают самое точное возможное описание общей Nэлектронной плотности типа Льюиса. Анализ проведен посредством изучения всех возможных взаимодействий между "заполненными" (донорными) NBO льюисовского типа и "пустыми" (акцепторными) NBO нельюисовского типа, и с помощью оценки их энергетической значимости теорией возмущений второго порядка. Так как эти взаимодействия ведут передаче занятости локализованных NBO Κ ОТ идеализированной орбиталям Льюиса нельюисовским структуру пустым Следовательно речь идет об описании передачи от идеальной структуры Льюиса), они называются коррекцией "делокализации" естественной структуры Льюиса нулевого порядка.

Натуральные заряды были вычислены с помощью модуля орбиталей естественных связей в программе Gaussian 09W. Эти количества получены согласно анализу популяций NBO. Модель представляет картину орбитали ближе к классической структуре Льюиса. Анализ NBO включает гибридизацию избранных связей рассчитанных методом B3LYP с использованием стандартных базисных состояний 3-21G (таблицы 2 и 3).

B3LYP	Атом	Связь	B3LYP	Атом	Свя:
S ¹ P ^{4.55} ,S ¹ P ^{2.73}	N ₁₃ -N ₁₄	N-N	S ¹ P ^{2.83} ,S ¹ P ^{6.03}	C ₇ -Cl ₁₂	C-Cl
S ¹ P ^{2.22} ,S ¹ P ^{8.76}	S ₁₇ -O ₁₈	S-O	S ¹ P ^{4.51} ,S ¹ P ^{4.18}	N ₁₅ -S ₁₇	N-S
S ¹ P ^{4.19} ,S ¹ P ^{3.18}	C ₄ -F ₃₅	C-F	S ¹ P ^{2.58} ,S ¹ P ^{8.76}	S ₁₇ -O ₁₉	S-0

Таблица 2. *Рассчитанные гибридизации NBO для* $C_{20}H_{11}F_{13}CIN_3O_3S$ при помощи B3LYP/3-21G.

S ¹ P ^{2.59} ,S ¹ P ^{4.76}	O ₂₉ -C ₃₀	0-C	S ¹ P ^{2.57} ,S ¹	N ₁₅ -H ₁₆	N-H
S ¹ P ^{3.98} ,S ¹ P ^{3.12}	C ₃₇ -F ₃₈	C-F	S ¹ P ^{4.16} ,S ¹ P ^{3.16}	C ₃₄ -F ₃₆	C-F
S ¹ P ^{4.07} ,S ¹ P ^{3.23}	C ₄₀ -F ₄₁	C-F	S ¹ P ^{4.19} ,S ¹ P ^{3.22}	C ₃₇ -F ₃₉	C-F
S ¹ P ^{3.97} ,S ¹ P ^{3.19}	C ₄₃ -F ₄₄	C-F	S ¹ P ^{4.00} ,S ¹ P ^{3.14}	C ₄₀ -F ₄₂	C-F

Эти данные показывают, что существует гиперсопряжение электронов между лигандами атомов с центральным атомом металла. Данные сопряжения основываются на p-d π – связях. Рассчитанные для $C_{20}H_{11}F_{13}\text{ClN}_3\text{O}_3\text{S}$ гибридизации NBO показывают, что все соединения имеют SP^X гибридизацию и неплоскую конфигурацию. Тотальная гибридизацию этих молекул это SP^X, что подтверждено их структурой. Количество гибридизированных связей показывающими искажение нормальных VSEPR структур и подтверждающими девиацию от VSEPR структур. (Рисунок 2)

Рисунок 2. Атомная орбиталь граничной молекулярной орбитали для С₂₀H₁₁F₁₃CIN₃O₃S при помощи B3LYP/3-21G

Были рассчитаны и подтверждены с опубликованными теоретическими данными некоторые термодинамические параметры частот для C₂₀H₁₁F₁₃ClN₃O₃S , энергия нулевых колебаний, Энергия коррекции, Энтальпии, свободная энергия Гибса

Таблица З. Некоторые термодинамические параметры частот для C₂₀H₁₁F₁₃ClN₃O₃S, энергия нулевых колебаний, Энергия коррекции, Энтальпии, свободная энергия Гибса.

 $C_{20}H_{11}F_{13}CIN_3O_3S$

Коррекция нулевых колебаний = 0.314221 (Hartree/Particle)

Тепловая коррекция к энергии = 0.351115

Тепловая коррекция к энтальпии = 0.352059

Тепловая коррекция к свободной энергии Гибса = 0.240518

2.3 Электронная плотность

2.4 Граничная молекулярная орбиталь

орбиталь) (B3MO молекулярная представляет НОМО высшая заселенная способность отдавать электрон, LUMO (низшая незанятая молекулярная орбиталь), как акцептор электрона представляет способность принимать электрон. Энергии НОМО и LUMO были рассчитаны по методу B3LYP/3-21G. Эта электронная абсорбция относиться к переходу от начального к первому возбужденному состоянию и в основном описывается возбуждением одного электрона с высшей заселенной молекулярной орбитали и орбитали (LUMO). Как высшая заселенная молекулярная орбиталь (НОМО) так и низшая незанятая молекулярная орбиталь являются главными орбиталями, принимающими участие в химической стабильности. Так как энергия НОМО напрямую связана с ионизационным потенциалом, Энергия LUMO напрямую связана со сродством к электрону. Энергетическая разница орбиталей НОМО и LUMO называется энергетическим интервалом, что является важным для стабильности структур. В дополнение, на рисунке 2 представлены 3D модели Высших заселенных молекулярных орбиталей (НОМО) и низших незянятых молекулярных орбиталей Энергии НОМО-LUMO были также рассчитаны) с использованием (LUMO). стандартных базисных состояний 3-21G и полученные данные соответственно указаны на рисунке.

ИК спектр

Инфракрасные спектры могут быть получены у образцов во всех фазах (жидкой, твердой, газообразной) Жидкости обычно анализируются, нанесением тонкой пленки, между двумя полированными соляными пластинами (обратите внимание, что стекло поглощает инфракрасное излучение, в то время как NaCl остается прозрачным). Если для растворения твердых веществ используются растворители, необходимо избегать частей растворителя. важных спектра, поглощением затемнения Обычно тетрахлорметан, перхлоророванные растворители, как ИСПОЛЬЗУЮТСЯ такие хлороформ и тетрахлорэтен. В качестве альтернативы, твердые вещества, также можно нанести на тонкую пластину KBr, под высоким давлением, или смешиваются с небольшим количеством нелетучей жидкости до пасты, которая размазывается между соляными пластинами. Однако в этой работе мы получили теоретический ИК спектр с помощью программы Gaussian 09. Частоты функциональных групп представлены на рисунке 4.

Рисунок 4. ИК спектр для C20H11F13CIN3O3S

ЯМР спектр

Рисунок 5. ЯМР спектр для C₂₀H₁₁F₁₃ClN₃O₃S

Заключение

интересовало выбранного В данной теоретическое изучение статье нас фторуглеродного соединения. С помощью методов теории функциональной плотности (B3LYP) с базисным набором 3-21G были вычислены оптимизированные геометрии, частоты стационарной точки и пути минимальной энергии. Расчеты B3LYP/3-21G избранные углов определили некоторые длины связей И величины для C20H11F13CIN3O3S. Точечная группа соединения это C₁

Благодарности

Выражаем глубокую благодарность за финансовую поддержку Научному Совету Международного университета имени Имама Хомейни и предоставление Гранта N 751387-91 и техническую поддержку Университета Тарбиат Муаллем.

Список литературы

- 1. Ghadah S. Alghamdi and Ali. Z. Alzahrani, Bonding Formation and Orbitals Nature of Zno Structure .2013.13.9.751
- 2. Monika, W. A.; Siddique, A. D. Portugaliae ElectrochimActa 2005, 23, 445.
- 3. O'Hagan, D . February 2008. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 37 (2): 308–19
- 4. Sudha. S, Sundaraganesan. N, Kurt, Cinar. M. 2011 Karabacak, Molecularstructure, vibrational spectroscopic, first order hyperpolarizability and HOMO, LUMO studies of 2-aminobenzimidazole. *Journal of Molecular Structure*, 84: 184-195.
- 5. Lemal, D. M. 2004. Perspective on fluorocarbon c?hemistry. Journal of Organic Chemistry, 69 (1): 1–11.
- 6. Murphy, C.D, Schaffrath, C. O'Hagan D2003Fluorinated natural products: the

biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya" Chemosphere, 52(2): 455-61.

- 7. Lewandowski ,G. Meissner E, Milchert E.Hazard ,J. 2006. Special applications of fluorinated organic compounds.136(3):385–91.
- 8. Becke, A. D. 1993 Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys., 98: 5648-5652
- 9. Sundaraganesan, N. and S. Ilakiamani, 2007. Dominic Joshua B Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3, 4-dimethylbenzaldehyde. *Spectrochimica Acta Part A.*, 68: 680-687
- 10. Lewis, D. F. V., C. Ioannides, and Parke, D. V. 1994. Interaction of a series of nitriles with the alcohol-inducible isoform of P450: computer analysis of structure- activity relationships. *Xenobiotica*, 24: 401-408.
- 11. Ralph, G. 1992. Chemical hardness and the electronic chemical potential Inorganic, *chimica Acta*, 198: 781-786.
- 12. Zhang, W.Curran D.P. 2006. Synthetic Application of Fluorous. Tetrahedron 62: 11837– 11865.
- 13. Smith, M. C., Ciao.Y, Wang ,H. andGeorge, S. J. 2005. Coucouvanis D., Koutmos M, Sturhahn W, Alp EA, Zhao J, Kramer SP Normal-Mode Analysis of FeCl4- and Fe2S2Cl42via Vibrational Mossbauer, Resonance Raman, and FT-IR Spectroscopies.*Inorg. Chem.*, 44: 5562-5570.
- 14. Vrajmasu, V. V., Mu["]nck, E. and E. L. Bominaar, 2004. Theoretical Analysis of the Jahn —Teller Distortions in Tetrathiolato Iron(II) Complexes. *Inorg. Chem.*, 43: 4862–4866.
- 15. Ghammamy, Sh., K. Mehrani, Rostamzadehmansor, S. and Sahebalzamani, H. 2011. Density functional theory studies on the structure, vibrational spectra of three new tetrahalogenoferrate (III) complexes. *Natural Science*, 3, 683-688.
- 16. Frisch, M. J. Trucks, G. W. 1998. GASSIAN 98 (Revision A. 3) Gaussian Inc., Pittsburgh, PA, USA.

Статья рекомендована к публикации членом редколлегии д.х.н. проф. С.М. Игумновым